
Gesture-Encrypted Location-Based Messaging

Gesture Recording and Feature
Extraction

Results and Future WorkFuzzy Matching

Location Tracking and App
Architecture

A user moves his or her phone,
thus generating acceleration and
attitude data.

The data generated by the user have 7 distinct attributes each
with many numeric values. We refer to each of these attributes as
a vector. We break each of these vectors into 11 separate
segments. We only evaluate a subset of the segments (the odds)
in order to avoid overfitting the data and reduce the amount of
computation necessary. By selecting the odd segments we
sample a fair spread of values of the entirety of the gesture and
get the first and last segments.

For each of the chosen segments we compute a feature
value:

This feature represents where within the range of values the
segment lies. We arrived at this feature extraction formula
after experimenting with others, but this one seemed to work
the best for us.

Now that we have a set of features to define a gesture, we can compare
various gestures to determine whether or not they match. In order to
decipher whether or not two gestures match, we compute a distance between
the two sets of feature vectors.

If the distance is below a threshold, we say the vectors match. We ultimately
picked a threshold value by training on a subset of gesture data. For each of
our predetermined gestures, we recorded the features for the gesture in
multiple trials and computed the maximum distance between the pairings of
trial runs. From this data we selected the maximum value of the maximum
distances between our trial gestures as the threshold.

By making calls to the iPhone location manager we are
able to track the location of the user. We schedule a
timer for the phone to periodically ping the server with
its location. The phone makes a URL request to the
server every handful of seconds in order to determine
whether or not the phone has come in the proximity of
any locations that contain a message.

A location is determined by its latitude and
longitude. If a user’s reported latitude and longitude
are within the proximity of a location’s latitude and
longitude, he or she will be notified by the app. In
order to determine a proximity, a Euclidean
distance between the two coordinate pairs is
calculated. The Euclidean distance is determined
using the haversine formula discussed previously in
the semester.

When a user is in a given location, he or she can create
a message and associate it with a certain gesture.
Other users of the app can attempt to read the message
when they are in the proximity of the original location if
they can match the gesture associated with the
message.

On our a set of 10 specific gestures, we were able to
match gestures with very high accuracy. Our false
negative rate, the percentage of time two matching
gestures were said to not match, was 14%. Our false
positive rate, the percentage of time two non-matching
gestures were said to match, was 7%. We call false
negatives lockouts, as the user was locked out from
viewing a message he or she should have been able to
see. On the other hand, we call false positives burglaries
because a user is able to see a message without properly
unlocking the message. We chose the threshold to favor
lockouts as opposed to burglaries due to the fact that
burglaries are more unfavorable than lockouts. This
favors security over convenience.

When actually determining the appropriate threshold value to
choose in examining whether or not the gestures match, we
calculate the “distances” between features. Success is
determined using the error rate, which we defined as the
average of the false positive and false negative rates. To
improve our results, we ran the perceptron algorithm on our
feature data to assign weights to features. This lowered the
error weight from 15% for unweighted features to 11%.

We believe there are a handful of areas we could
improve upon moving forward. To begin with, we
could expand the gesture functionality by allowing
for unique gestures, and not just the subset we
currently have. Aside from messaging, we believe
location-based gesturing could have other
interesting applications. For example, one could
easily envision future applications for unlocking cars
or houses using location-based gesturing.

