
AirMuler 
An Anonymous Data Muling Framework

Ankush Gupta, Justin Martinez
github.com/ankushg/AirMuler



Dynamic Multihop Diagram



Multihop Setup

● Message and ACK Buffers
○ Broadcast to new peers as they connect
○ Fixed size so new messages replace old ones

● Sent Message buffer maps Messages sent from this 
peer with their plaintext

● Messages have a TTL measured in number of hops 
before expiring



Transmission Handling

● Upon Message receipt:
○ If decryptable:

■ ACK is created and buffered for broadcast
■ Client is notified of data receipt

○ If not decryptable, Message is buffered for rebroadcast

● Upon ACK receipt:
○ Corresponding Message is debuffered if present in Message buffer
○ ACK is buffered for broadcast

○ Client is notified of ACK receipt if Sent Message buffer contains a 
match



Encryption Scheme



Encryption Scheme

● All transmitted data is encrypted such that neither the 
sender nor the receiver’s identity is known
○ UUIDE is encrypted using the AckKey

○ BlobKeyE is sealed using the Ephemeral secret key and the Receiver’s 
public key

○ BlobE is encrypted using the BlobKey



Decryption Scheme



Decryption Scheme

● The receiver cannot determine the sender’s identity 
unless the message is intended for him
○ BlobKeyE can only be opened using the intended Receiver’s secret key 

and the UUID (Ephemeral public key)

○ Blob contains the Sender’s public key, allowing the Receiver to open 
ME



ACK Scheme (Zero Knowledge Proof)

● After decryption, the receiver transmits the ACK (UUID, 
AckKey)

● Any node who receives this ACK can check if their 
Message buffer contains a message with a matching 
UUID
○ Anyone verify that ACK is valid by encrypting UUID with the AckKey, 

and checking against UUIDE

○ This Zero Knowledge Proof does not expose the Receiver’s identity, as 
the ACK could have been retransmitted from any node



AirMuler Framework

● Custom crypto can be supplied by implementing 
CryptoProvider
○ encryptMessage(message: NSData, with keyPair: 

KeyPair, to recipient: PublicKey) throws -> NSData?

○ decryptMessage(message: NSData, with keyPair: 

KeyPair) throws -> (payload: NSData?, from: 
PublicKey, ackMessage: NSData?)

○ checkBuffer(buffer: [NSData], against ackMessage: 
NSData) throws -> Int?

● SodiumCryptoProvider
○ Uses libsodium to compute all cryptographic functions as detailed 

above



AirMuler Framework

● NetworkLayer
○ Initialized with a subclass of CryptoProvider
○ Implements Multipeer Connectivity APIs
○ Maintains state for Message, ACK, and Sent Message buffers
○ Handles broadcasting messages to new connections

■ Utilizes a randomized TTL to eliminate exposure based on observing messages

○ Allows client to register as a NetworkLayerDelegate

○ Allows client to call sendMessage(message: NSData, to recipient: 
PublicKey)

● NetworkLayerDelegate methods
○ connectedWithKey(key: PublicKey)
○ receivedMessage(message: NSData?, from publicKey: PublicKey)
○ acknowledgedDeliveryOfMessage(message: NSData?, to publicKey: PublicKey)



● Example application that utilizes the AirMuler 
Framework 

● Multipeer encrypted chat client
● Allows users to add contacts with an Alias + Public Key 

combination
○ Creates separate message thread for each alias

● Sends JSON { messageText, timestamp } 
through NetworkLayer

● Saves sent/received messages through CoreData
● Provides visual feedback of message receipt when ACK 

is received

HeeHaw 






