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Figure 2. Reconstructed trajectory.

e (Collected data in 5 locations: Stata,
Lobby 7, Walker, Bldg. 66, Bldg. 34.

e Fixed camera above, looking down
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Figure 4. CDF error plots of Walker (left) and Bldg. 34 (right).

on experimenters. Object Tracking: <t_, trackerID, x , x,, v , v.>, Inertial Data: <t_, v,, v. >, ...
e Record timestamp at the start of data I Matching | V. Conclusion and Future Work
colection. 1. Simulate onli t t each g [ Parameters Used background-subtraction based object
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