
Problem Statement

Our system S

Dynamic Time Warping (DTW)

Objective: measure similarities between two
temporal sequences.

Idea: Given two sequences, warp them non-
linearly in the time dimension, and calculate an
optimal match between them.

Application: speech recognition, signature
recognition, shape matching, etc.

(http://cst.tu-plovdiv.bg/bi/DTWimpute/DTWalgorithm.html)

System Infrastructure

ax

ay

Preprocessing Select exemplary
points

Training phase (offline)

Training data

Application (online)

ax

ay

HTTP

Accelerometer data

Prediction

PreprocessingTraining
data

Pairwise
DTW

kNN

Data Collection

General Setting:
● Letters: O ,I, J, L, Z, S, V, T, X, B.
● 10 people, each person writes each letter 10 times.
● Collection frequency: 100Hz

Constraints
1. Vertically hold, face towards the phone
2. Touch the screen, keep it touched until the end
3. Try to keep the phone vertically straight
4. Try to write the letter on the same plane as the phone’s plane

How to draw the letters
1. For B, go down and up and the bumps
2. For I, up -> down end.
3. For X, Start at the left top corner

Data Preprocessing, Distance Metric

Data Preprocessing
● Scaling: Scale ax and ay independently to be inside [-1, 1].
● Sampling: take the average over every n data points.

Distance Metric: For two data points (ax1, ay1) and (ax2, ay2),

Exemplary Points for kNN

For each user’s data, and each letter,

1. Calculate sum{DTW distances from all other time series} for each time
series.

2. Remove outliers
● Calculate the mean and standard deviation of the sums
● Remove time series i if sum_i is 2 standard deviation away from the

mean
3. Choose Exemplary points

Select n time series with smallest sum of distances from other time
series.

Evaluation

● Train on 9 people’s data, and test on the remaining person.
● Recall = number of correct predictions / number of air gestures.
● Results when

○ Sample every 10 data points,
○ Number of exemplaries per person per letter = 1
○ Number of Nearest Neighbors (k in kNN) = 1

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10 Average

57% 79% 96% 96% 96% 83% 89% 96% 92% 94% 88%

User1 behaves differently from other users.

Recall vs. Number of Nearest Neighbors (k in kNN)

● In general, performance
decreases when k
increases.

● We choose k = 1 in our
system.

Recall vs k in kNN

Number of exemplary points per person per letter = 1.
Sample over every 5 letter.

Recall vs. Number of Exemplary Points

Recall vs. Number of Exemplary Points

● 1.4% increase vs. 10 times slower

We choose k = 1

● But, runtime increase proportional to
the number of exemplary points

Recall vs. Sample Rate

Recall vs. Sample Rate

We choose

sample rate of 10
(See runtime comparisons)

Running Time vs. Sample Rate

Runtime per 100 DTWs
vs sample rate

In order to decrease the end-to-
end latency, we choose

sample rate = 10

Misclassification rate per letter

Parameters:
- Sample rate = 10
- Number of exemplary points = 1
- K for kNN = 1

Sequence Alignments

B S

