Wireless Mesh Networks

6.S062 Spring 2017
Lecture 6
Balakrishnan & Madden
M.I.T.

Today's paper:

A High-Throughput Path Metric for Multi-Hop Wireless Routing

Douglas S. J. De Couto Daniel Aguayo, John Bicket, and Robert Morris

Indoor wireless network

29 PCs with 802.11b radios (fixed transmit power) in 'ad hoc' mode

Testbed UDP throughput

What throughput is possible?

"Best" for each pair is highest measured throughput of 10 promising static routes.

Talk outline

- Testbed throughput problems
- Wireless routing challenges
- A new high-throughput metric (ETX)
- Evaluation

Challenge: more hops, less throughput

- Links in route share radio spectrum
- Extra hops reduce throughput

Challenge: many links are lossy

One-hop broadcast delivery ratios

Smooth link distribution complicates link classification.

Challenge: many links are asymmetric

Many links are good in one direction, but lossy in the other.

A straw-man route metric

Maximize bottleneck throughput

Bottleneck throughput: $\begin{cases} A-B-C = 50\% \\ A-D-C = 51\% \end{cases}$

Actual throughput: $\begin{cases} A-B-C : ABBABBABB = 33\% \\ A-D-C : ADDAADD = 25\% \end{cases}$

Another straw-man metric

Maximize end-to-end delivery ratio

End-to-end delivery ratio:

$$\begin{cases} A-B-C = 51\% \\ A-C = 50\% \end{cases}$$

Actual throughput:
$$\begin{cases} A-B-C : ABBABBABB = 33\% \\ A-C : AAAAAAA = \underline{50\%} \end{cases}$$

New metric: ETX

Minimize total transmissions per packet (ETX, "Expected Transmission Count")

Link throughput ≈ 1/ Link ETX

Delivery Ratio		Link ETX	Throughput
100%	\bigcirc \longrightarrow \bigcirc	1	100%
50%		2	50%
33%	→ * O	3	33%

Calculating link ETX

Assuming 802.11 link-layer acknowledgments (ACKs) and retransmissions:

```
P(TX success) = P(Data success) × P(ACK success)

Link ETX = 1 / P(TX success)

= 1 / [P(Data success) × P(ACK success)]
```

Estimating link ETX:

P(Data success) \approx measured fwd delivery ratio r_{fwd} P(ACK success) \approx measured rev delivery ratio r_{rev}

Link ETX $\approx 1 / (r_{\text{fwd}} \times r_{\text{rev}})$

Measuring delivery ratios

- Each node broadcasts small link probes (134 bytes), once per second
- Nodes remember probes received over past 10 seconds
- Reverse delivery ratios estimated as $r_{rev} \approx pkts received / pkts sent$
- Forward delivery ratios obtained from neighbors (piggybacked on probes)

Route ETX

Route ETX = Sum of link ETXs

	Route ETX	Throughput
\bigcirc \longrightarrow \bigcirc	1	100%
	2	50%
$\bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$	2	50%
	3	33%
) 5	20%

ETX Properties

- ETX predicts throughput for short routes (1, 2, and 3 hops)
- ETX quantifies loss
- ETX quantifies asymmetry
- ETX quantifies throughput reduction of longer routes

ETX caveats

- ETX link probes are susceptible to MAC unfairness and hidden terminals
 - Route ETX measurements change under load
- ETX estimates are based on measurements of a single link probe size (134 bytes)
 - Under-estimates data loss ratios, over-estimates
 ACK loss ratios
- ETX assumes all links run at one bit-rate

Evaluation Setup

- Indoor network, 802.11b, "ad hoc" mode
- 1 Mbps, 1 mW, small packets (134 bytes), RTS/CTS disabled
- DSDV + modifications to respect metrics
 - Packets are routed using route table snapshot to avoid route instability under load.
- DSR + modifications to respect metrics

ETX improves DSDV throughput

Some related work

- Threshold-based techniques
 - DARPA PRNet, 1970s–80s [Jubin87]: Minimum hop-count, ignore 'bad' links (delivery ratio < 5/8 in either direction)
 - Link handshaking [Lundgren02, Chin02]: Nodes exchange neighbor sets to filter out asymmetric links.
 - SNR-based approaches [Hu02]: Mark low-SNR links as 'bad', and avoid them
- Mote sensors [Yarvis02]
 - Product of link delivery ratios

From ETX to Expected Transmission Time (ETT)

- Extending to wireless networks with multiple bit rates
- Take into account both the delivery rate and the **time** taken to transmit packet (i.e., time occupied on "air" by packet)

Summary

- ETX is a new route metric for multi-hop wireless networks
- ETX accounts for
 - Throughput reduction of extra hops
 - Lossy and asymmetric links
 - Link-layer acknowledgements
- ETX finds better routes!

Extra slides follow

Big packets

Per-pair DSDV throughputs

ETX vs. link handshaking

Hop-count penalty

Throughput differs between paths

Evaluation details

All experiments:

134-byte (including 802.11 overhead) UDP packets sent for 30 seconds

DSDV:

- 90 second warm-up (including ETX)
- Route table snapshot taken at end of 90s used to route UDP data for next 30s

DSR:

- Initiate route request by sending 1 pkt/s for five seconds; followed by UDP data for 30s
- ETX warms up for 15s before route request

Effect of asymmetry on DSDV

B successfully receives all of A's route ads, and installs a one-hop route to A.

But, throughput of \mathbf{B} - \mathbf{A} = 0.08 \mathbf{B} - \mathbf{C} - \mathbf{A} = 0.5