
OBJECTIVE-C

A modern-person’s

guide to iPhone code

development:

YE OLDE PROGRAMMING
LANGUAGES

C

Ruby

Objective C

C++

Smalltalk-80

Simula 67

Objective C 2.0

Java

Python

Perl

1983

1971

1980

1983

1987

1967
1991

1993

1995

2006

Source: Computer Languages Timeline * http://www.levenez.com/lang/

WHAT IS OBJECTIVE-C?

v  An	object	oriented	language	which	lies	on	top	of	the	C	language	.	

v  Its	primary	use	in	modern	compu;ng	is	on	Mac	OS	X	as	a	desktop	
language	and	also	on	iPhone	OS	(or	as	it	is	now	called:	iOS).		

v  It	was	originally	the	main	language	for	NeXTSTEP	OS,	also	known	as	
the	opera;ng	system	Apple	bought	and	descended	Mac	OS	X	from,	
which	explains	why	its	primary	home	today	lies	on	Apple’s	opera;ng	
systems.		

v  Because	any	compiler	of	Objec;ve-C	will	also	compile	any	straight	C	
code	passed	into	it,	we	have	all	the	power	of	C	along	with	the	power	
of	objects	provided	by	Objec;ve-C.		

PRIMITIVES

v  The	usual	C	Types	
•  int,	float,	...	

v  It’s	own	boolean	(ObjC	forked	before	C99)	
•  BOOL	
•  Takes	values	NO=0	and	YES=1	

v  Some	special	types	
•  id,	Class,	SEL,	IMP	
•  nil	is	used	instead	of	null.	

STRINGS

v Always use (NSString *) instead of C Strings
•  Inline :

@"This	is	an	inline	string";	

•  Assigned:		
NSString	*str	=	@"This	is	assigned	to	a	variable";	

v  leaving out the @, causes a crash!

v Objective C Pointers aren’t abstracted, like java is. Look at

this, in the notes!

You must define constant
strings this way, lest you

incite a programmic crash

INTERFACE AND
IMPLEMENTATION

v  A simple class in Objective-C , by default, has two files:
v The implementation file which is a file that ends with a suffix of .m

v  The interface file which is a file that ends with a suffix of .h.

CLASS DECLARATION

INTERFACE

#import <COCOA Cocoa.h>

@interface Person : NSObject {

 //This is where attributes go
 NSString *name;
 NSNumber *age;
 NSString *address;

}

//This is where methods go
- (void)updageAddress;

@end

A system allowing for the declaration of clases and methods

IMPORTING THE
INTERFACE

v  The interface file must be included in any source module that

depends on the class interface

v  The interface is usually included with the #import directive.

REFERRING TO OTHER
CLASSES

v  An interface file declares a class and, by importing its superclass,

implicitly contains declarations for all inherited classes, from

NSObject on down through its superclass.

v  If the interface mentions classes not in this hierarchy, it must

import them explicitly or declare them with the @class

directive:

 @class SyFy, FlyingMachine;

IMPLEMENTATION

#import “Person.h"

@implementation Person

-(void) updateAddress {

// code goes here to add gas
}

@end

MESSAGES

v Method Calling v. Message Passing
v  In Objective-C, we call object methods by passing messages.
v A message is sent to the instance
v The message is the method we want to apply.
v  Programmatically it looks like this:

	 	 	[recipient message];			

v  With *No* arguments
	 	 	[object message];

[aPerson init];

v  With *1* Argument
	 	 	[object message:value];

[aPerson initWithLast:@”Smith”];

v  With *2* arguments
	 	 	[object message:value1 arg2:value2];

[aPerson initWithLast:@”Smith” andFirst:@”John”];

MORE ON MESSAGES

v Messages can be sent to classes:
	[Person alloc];

v Messages can be nested:
	Person* p = [[Person alloc]
initWithName:@”John”];

•  Equal to:
Person* p = [Person alloc];
[p initWithName:@”John”];

	
v  A crucial difference between function calls and messages is that a function and its

arguments are joined together in the compiled code, but a message and a receiving
object aren’t united until the program is running and the message is sent.

v  Therefore, the exact method that’s invoked to respond to a message can only be
determined at runtime, not when the code is compiled.

	

METHOD DECLARATION

METHODS	

v Define	a	method:	
-	(id)initWithFirst:(NSString*)firstName	

	 	 	 	andLast:
(NSString*)lastName;	
	
-	Call	a	method:	
	

	[aPerson	initWithFirst:@”John”	 	 	
	 	 	 		andLast:@”Smith”];	

CLASS	EXAMPLES	

v  NSString is a string of text that is immutable.

v  NSMutableString is a string of text that is mutable.

v  NSArray is an array of objects that is immutable.

v  NSMutableArray is an array of objects that is mutable.

v  NSNumber holds a numeric value.

v  If an object is immutable that means when we create the object and
assign a value then it is static. The value can not be changed.

v  If an object is mutable then it is dynamic, meaning the value can be
changed after creation.

Objective-C does not have syntax to mark classes as abstract, nor does it prevent you
from creating an instance of an abstract class.

OBJECT	TYPING	

•  Every object is of type

 id

•  General type for any kind of object regardless of class

•  Can be used for both instances of a class and class objects themselves.

•  As a pointer to the instance data of the object.

 id person; (dynamic typing)

•  Can declare a more specific type:
Person* person; (static typing)

TYPE INTROSPECTION

v  Instances can reveal their types at runtime.

v  isMemberOfClass: defined in the NSObject class, checks whether

the receiver is an instance of a particular class.
if ([anObject isMemberOfClass:someClass])

v  isKindOfClass: checks more generally whether the receiver inherits

from or is a member of a particular class (whether it has the class

in its inheritance path):
if ([anObject isKindOfClass:someClass])

DYNAMIC	TYPING	

v  The id type is completely nonrestrictive. By itself, it yields no
information about an object, except that it is an object.

v  A program typically needs to find more specific information
about the objects it contains.

v  Each object has to be able to supply it at runtime.
v  The isa instance variable identifies the object’s class—what

kind of object it is.
v  Objects with the same behavior (methods) and the same

kinds of data (instance variables) are members of the same
class.

EQUIVALENT
STATEMENTS

v  Person *p = [[Person alloc] init];

v  id p= [[Person alloc] init];

POINTERS AND
INITIALIZATION

int main (int argc, const char * argv[]) {
 NSString *testString;
 testString = [[NSString alloc] init];
 testString = @“This is a test string !";
 NSLog(@"testString: %@", testString);
 return 0;

}

CREATING	 INSTANCES 	

v Objec;ve-C	has	a	lot	of	conven;ons	that	are	not	
enforced	by	the	compiler: 		

		
v Allocates	memory	and	returns	a	pointer.	

	 	 	 	+(id)alloc;	
v Ini;alizes	the	newly	allocated	object.	

	 	 	 	-(id)init;	
The	alloc	method	dynamically	allocates	memory	for	the	new	

object’s	instance	variables	and	ini;alizes	them	all	to	0—all,	that	
is,	except	the	isa	variable	that	connects	the	new	instance	to	its	
class.	

NSLOG 	COMMON	STR ING	FORMAT	
SPEC IF IERS 	

v  %@ 	 		Objec;ve-C	object	using	the	descrip;on	or			descrip;onWithLocale:	results		

v  %%	 	 	The	“%”	literal	character	%d	Signed	integer	(32-bit)		

v  %u	 	 	Unsigned	integer	(32-bit)	

v  	%f	 	 	Floa;ng-point	(64-bit)		

v  %e	 	 	Floa;ng-point	printed	using	exponen;al	(scien;fic)	nota;on	(64-bit)		

v  %c	 	 	Unsigned	char	(8-bit)	

v  	%C 	 		Unicode	char	(16-bit)		

v  %s	 	 	Null-terminated	char	array	(string,	8-bit)		

v  %S	 	 	Null-terminated	Unicode	char	array	(16-bit)		

v  %p	 	 	Pointer	address	using	lowercase	hex	output,	with	a	leading	0x		

v  %x	 	 	Lowercase	unsigned	hex	(32-bit)		

v  %X	 	 	Uppercase	unsigned	hex	(32-bit)	

THE 	SCOPE 	OF 	 INSTANCE 	VARIABLES 	

v @private	
•  The	instance	variable	is	accessible	only	within	the	class	that	declares	
it.	

v @protected	–	(default)	
•  The	instance	variable	is	accessible	within	the	class	that	declares	it	and	
within	classes	that	inherit	it.	

v @public	
•  The	instance	variable	is	accessible	everywhere.	

v @package	
•  Using	the	modern	run;me,	an	@package	instance	variable	acts	like	
@public	inside	the	image	that	implements	the	class,	but	@private	
outside.	

v By	default,	all	unmarked	instance	variables		are	@protected.	

INIT IALIZ ING	A	CLASS 	OBJECT 	

v If	a	class	makes	use	of	sta;c	or	global	variables,	the	
ini6alize	method	is	a	good	place	to	set	their	ini;al	values.	
					

	+	(void)ini;alize	{		
	 		if	(self	==	[ThisClass	class])	{		
				 				//	Perform	ini;aliza;on	here.	...		
				}	
	} 		
Because	of	inheritance,	an	ini;alize	message	sent	to	a	class	that	doesn’t	

implement	the	ini;alize	method	is	forwarded	to	the	superclass,	even	though	
the	superclass	has	already	received	the	ini;alize	message.	

CLASS NAMES IN SOURCE
CODE

v The	class	name	can	be	used	as	a	type	name	for	a	kind	of	object	

	 	 	Rectangle	*anObject;	
v As	the	receiver	in	a	message	expression,	the	class	name	refers	to	the	
class	object	

	 	 	if	([anObject	isKindOfClass:[Rectangle	
class]])	
v  If	you	don’t	know	the	class	name	at	compile	;me	but	have	it	as	a	
string	at	run;me,	you	can	use	NSClassFromString	to	return	the	class	
object:	

	NSString	*className;	...		
	if	([anObject	isKindOfClass:NSClassFromString(className)])	

v You	can	test	two	class	objects	for	equality	using	a	direct	pointer	
comparison.	

	 	if	([objectA	class]	==	[objectB	class])	{	//...	

VARIABLES 	AND	CLASS	OBJECTS 	
v  For	all	the	instances	of	a	class	to	share	data:	
v  The	simplest	way	to	do	this	is	to	declare	a	variable	in	the	class	implementa;on	file:	

int	MCLSGlobalVariable;		
@implementa;on	MyClass	

v  In	a	more	sophis;cated	implementa;on,	declare	a	variable	to	be	sta;c,	and	provide	
class	methods	to	manage	it.	

v  Declaring	a	variable	sta;c	limits	its	scope	to	just	the	class—and	to	just	the	part	of	
the	class	that’s	implemented	in	the	file.	

v  Unlike	instance	variables,	sta;c	variables	cannot	be	inherited	by,	or	directly	
manipulated	by,	subclasses.		

PROPERTY	AND	SYNTHESIZE 	

	
	
@interface	Person	:	NSObject	{				
			

					//This	is	where	aoributes	go				
				NSString	*name;		
				NSNumber	*age;	
				NSString		*address;	

			
	}				
	@end			

These	all	need		
Seoers	and	Geoers	

@interface	Person	:	NSObject	{				
			

					//This	is	where	aoributes	go				
				NSString	*name;		
				NSNumber	*age;	
				NSString		*address;	

			
	}				
	@property(readwrite,	retain)	NSString*	name;				
	@property(readwrite,	retain)	NSString*	address				
	@property(readwrite,	retain)	NSNumber*	age;				

	
	@end			

v  Think	of	a	property	as	a	compiler	macro	that	generate	the	geoer	and	
seoer	for	you.	

		

@implementa;on	Person			
@synthesize	name,age,	address;				
		…	
}				
@end			
v @property	replaces	all	of	the	interface	method	
declara;ons	for	geoers	and	seoers,		
v @synthesize	replaces	the	actual	methods	
themselves.	

PROPERTY ATTRIBUTES
	
@property	(readonly)	int	key;	
@property	(nonatomic,	retain)	NSString	*;tle;	
@property	(nonatomic,	copy)	NSString	*first_name; 		
	
Format:		
@property	(aKributes)	type	name;	

		
	Writability	
	readwrite	(default)	
	readonly	

	SeKer	SemanQcs	
	assign	(default)	
	retain	
	copy	
	Atomicity	
	nonatomic	
	(no	“atomic”	aoribute	
	but	this	is	the	default)	

	
Source:	

	
hop://developer.apple.com/documenta;on/Cocoa/Conceptual/Objec;veC/Ar;cles/chapter_5_sec;on_3.html	
	

CALLING	PROPERTIES 	

	@property	(nonatomic,	copy)	NSString*name;	
	
Use	“dot	nota;on”	:	
	 	 	person.name	=	@”John	Smith";	

	 	a	=	person.name;	
	
Or	Message	passing:	

	 	[person	setName:	@”John	Smith"];	
	 	a	=	[person	getName];	

USING DOT SYNTAX

•  Use dot syntax to invoke accessor methods using the same pattern as accessing structure elements.

 myInstance.value = 10;
–  which is equivalent to:

 [myInstance setValue:10];

•  You can read and write properties using the dot (.) operator

•  Accessing a property property calls the get method associated with the property (by default, property)

•  Setting it calls the set method associated with the property (by default, setProperty:).

•  An advantage of the dot syntax is that the compiler can signal an error when it detects a write to a

read-only property, whereas at best it can only generate an undeclared method warning that you

invoked a non-existent setProperty: method, which will fail at runtime.

•  There is one case where properties cannot be used:

 id y; x = y.z; // z is an undeclared property

•  If you want to access a property of self using accessor methods, you must explicitly call

out self as illustrated in this example:
 self.age = 10;

•  If you do not use self., you access the instance variable directly.

•  In the following example, the set accessor method for the age property is not invoked:
 age = 10;

•  If a nil value is encountered during property traversal, the result is the same as sending

the equivalent message to nil.

MEMORY	MANAGEMENT	

v  In	Objec;ve-C	there	are	two	methods	for	managing	memory:	
•  Reference	coun;ng		--	Manual–		

•  depends	on	code	added	by	the	programmer		
	

•  Garbage	collec;on.		--	Automa;c	–		
•  system	automa;cally	managing	the	memory.	–		
•  Not	available	on	iPhone.	

Op:		

+1	 +1	 -1	 -1	Ref	Count	

1 0 1 2 1

+	alloc	 -	init	 -	retain	 -	release	 -	release	

main() Create array Release from use

my_func() Retain for use

initialize

Release from use

OBJECT LIFECYCLE

AUTORELEASE AND
AUTORELEASE POOLS

	NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
[pool drain];

	

v  When the autorelease message is sent to an object, that object is then
added to the inner most auto release pool

v  When the pool is sent the drain (i.e. release) message, then all the
objects sent the autorelease message are released

v  Autorelease defers the release until later.
v  You may nest as many autorelease pools as you need.
v  The inner autorelease pool has absolutely no effect on the outer

autorelease pool

RETAINCOUNT

v  A	method	we	can	use	to	see	how	many	references	an	
object	has.		

v  Can	be	used	as	follows:	
	
NSLog(@"retainCount for person: %d", [person retainCount]);

v  No	need	to	pay	too	much	aoen;on	to	retainCount,	best	
prac;ce:	
v When	you	want	an	object,	retain	(or	alloc)	it.	
v When	you	are	done	with	an	object,	release	it.	

WHEN IS AN OBJECT
DESTROYED?

v  When it’s retain count reaches 0,
 then the deconstructor - dealloc is called

v  Never call dealloc yourself -- this is always called automatically for you.

v  (Except when you’re calling [super dealloc] from within your dealloc
implementation)

 -(void)dealloc {

[super dealloc];
[name release];
 [address release];

}

PROTOCOLS

v  A	protocol	declares	methods	that	can	be	implemented	by	any	

class.		

v  Protocols	are	not	classes	themselves.		

v  They	simply	define	an	interface	that	other	objects	are	

responsible	for	implemen;ng.		

v When	you	implement	the	methods	of	a	protocol	in	one	of	your	

classes,	your	class	is	said	to	conform	to	that	protocol.		

	

@protocol MyProtocol

- (void)myProtocolMethod;

@end

v  protocols	do	not	have	a	parent	class		

v  they	do	not	define	instance	variables	
@interface MyClass : NSObject <UIApplicationDelegate, MyProtocol > {

 }

@end

v  Protocol	methods	can	be	marked	as	op;onal	using	the	@op;onal	keyword.	Or	
required	using	@required	keyword	to	formally	denote	the	seman;cs	of	the	
default	behavior.		

v  The	default	is	@required,	if	no	keyword	is	specified.	

	

CATEGORIES

v  Allow	us	to	add	methods	to	an	exis;ng	class,	so	that	all	

instances	of	that	class	in	the	applica;on	gain	the	added	

func;onality.		

v  They	are	different	from	subclassing	

v  Categories	don’t	allow	you	to	use	instance	variables.		

v  it	is	possible	to	overwrite	a	method	already	in	place	

CATEGORY SYNTAX

		
	@interface ClassNameHere (category)

 // method declaration(s)

@end

The implementation looks like this;

@implementation ClassNameHere (category)

// method implementation(s)

@end
	
File naming convention following the pattern of the name of the class we are
adding a category to, a plus sign, and the name of our category.
	

C A TE G ORY E XA MPL E

	@interface NSString (reverse)

-(NSString *) reverseString;
@end

 For the implementation:

@implementation NSString (reverse)

-(NSString *)reverseString {

}
@end

The two files created are named: NSString+reverse.h (interface)
And NSString+reverse.m (implementation).

E XTE NS IONS

v  Class	extensions	are	like	“anonymous”	categories,	except	that	

the	methods	they	declare	must	be	implemented	in	the	main	

@implementation block	for	the	corresponding	class.	
@interface MyObject ()
- (void)setNumber:(NSNumber *)newNumber;
@end

CREATING	A	S INGLETON	
static MySingleton* sharedSingleton = nil;
 + (MySingleton *) sharedSingleton {

if (sharedSingleton == nil) {
 sharedSingleton = [[super allocWithZone:NULL] init];

}
return sharedSingleton ;
}
+ (id)allocWithZone:(NSZone *)zone { return [[self

sharedSingleton] retain]; }
 - (id)copyWithZone:(NSZone *)zone { return self; }
- (id)retain { return self; }
- (NSUInteger)retainCount {

return NSUIntegerMax; //denotes an object that cannot be
released

}
- (void)release { //do nothing }
- (id)autorelease { return self; }

FAST ENUMERATION

v Fast	enumera;on	is	a	language	feature	that	allows	you	to	
efficiently	and	safely	enumerate	over	the	contents	of	a	collec;on	
using	a	concise	syntax.		

v 	The	syntax	is	defined	as	follows:	
for	(Type	newVariable	in	expression)	{	statements	}	

v or	
Type	exisKngItem;	
for	(exisKngItem	in	expression)	{	statements	}	
Ex:	

	for	(NSString	*element	in	array){	 	 	 		
	 	NSLog(@"element:	%@",	element);		
	}	

SELECTORS 	
v  Has two meanings:

•  Used to refer to the name of a method when it’s used in a
source-code message to an object.

•  Also used to refer to the unique identifier that replaces the name
when the source code is compiled.

•  Compiled selectors are of type SEL.
•  All methods with the same name have the same selector.
•  You can use a selector to invoke a method on an object
•  this provides the basis for the implementation of the target-action design pattern in Cocoa.

v  Instead of using full ASCII names , the compiler writes each method

name into a table, then pairs the name with a unique identifier that

represents the method at runtime.

v  The runtime system makes sure each identifier is unique: No two selectors

are the same, and all methods with the same name have the same selector.

v  Compiled selectors are assigned to a special type, SEL, to distinguish them

from other data

SEL	setWidthHeight;		
setWidthHeight	=	@selector(setWidth:height:);	

•  The	performSelector:,	performSelector:withObject:,	and	
performSelector:withObject:withObject:	methods,	defined	in	the	
NSObject	protocol,	take	SEL	iden;fiers	as	their	ini;al	arguments	

•  setWidthHeight	=	NSSelectorFromString(aBuffer);	
	NSString	*method;		

•  method	=	NSStringFromSelector(setWidthHeight);	

EXCEPTION	HANDLING 	

v Objec;ve-C’s	excep;on	support	revolves	around	four	

compiler	direc;ves:	@try,	@catch,	@throw,	and	@finally:	

v Can	re-throw	the	caught	excep;on	using	the	@throw	

direc;ve	without	an	argument	inside	a	@catch()	block	

v can	throw	any	Objec;ve-C	object	as	an	excep;on	object.		

v The	NSExcep;on	class	provides	methods	that	help	in	

excep;on	processing,	but	it	can	be	customized	to	

implement	your	own	if	you	so	desire.		

SYNCHRONIZING	THREAD	
EXECUTION 	

v  Objec;ve-C	supports	mul;threading	in	applica;ons.	

v  	Two	threads	can	try	to	modify	the	same	object	at	the	same	;me,	a	situa;on	that	can	cause	serious	
problems	in	a	program.	

v  	To	protect	sec;ons	of	code	from	being	executed	by	more	than	one	thread	at	a	;me,	Objec;ve-C	
provides	the	@synchronized()	direc;ve.	

	-	(void)cri;calMethod	{		
	 											@synchronized(self)	{	
	 	 		//	Cri;cal	code.	...		

																							}	
	 		}	

v  The	@synchronized()	direc;ve	takes	as	its	only	argument	any	Objec;ve-C	object,	including	self	

v  This	object	is	known	as	a	mutual	exclusion	semaphore	or	mutex.	

v  The	Objec;ve-C	synchroniza;on	feature	supports	recursive	and	
reentrant	code	

v A	thread	can	use	a	single	semaphore	several	;mes	in	a	recursive	

manner;	other	threads	are	blocked	from	using	it	un;l	the	thread	

releases	all	the	locks	obtained	with	it	

v When	code	in	an	@synchronized()	block	throws	an	excep;on,	the	

Objec;ve-C	run;me	catches	the	excep;on,	releases	the	semaphore	

(so	that	the	protected	code	can	be	executed	by	other	threads),	and	

re-throws	the	excep;on	to	the	next	excep;on	handler.	

IMPORTANT	FOUNDATION	
CLASSES 	

v  Strings	
•  The	NSString	class	

v Numbers	and	Dates	
•  Unlike	standard	C	floats,	integers,	and	so	forth,	these	elements	

are	all	objects	

v  CollecQons	
•  arrays,	dic;onaries,	and	sets.	

v  NSString	*myString	=	@"A	string	constant";	

v  NSString	*myString	=	[NSString	stringWithFormat:	@"The	number	is	%d",	5];	

v  NSLog(@"%@",	[myString	stringByAppendingString:@"22"]);	

v  NSLog(@"%@",	[myString	stringByAppendingFormat:@"%d",	22]);	

v  NSLog(@"%d",	myString.length);	//length	

v  prinw("%c",	[myString	characterAtIndex:2]);	

v  Convert	to	C-String:	
•  prinw("%s\n",	[myString	UTF8String]);	prinw("%s\n",	

•  [myString	cStringUsingEncoding:	NSUTF8StringEncoding]);	

v  Convert	to	NSString:	
•  [NSString	stringWithCString:"Hello	World"	encoding:	NSUTF8StringEncoding]		

		
		
		
		
	

v Write	a	string	to	a	file:	
•  [myString	writeToFile:path	atomically:YES	encoding:NSUTF8StringEncoding	

error:&error]	

v  Reading	a	string	from	a	file:	
•  NSString	*inString	=	[NSString	stringWithContentsOfFile:path	

encoding:NSUTF8StringEncoding	error:&error];	

v  Split	a	String:	
•  NSString	*myString	=	@"One	Two	Three	Four	Five	Six	Seven";	NSArray	

*wordArray	=	[myString	componentsSeparatedByString:	@"	"];	

v  Substrings	
•  NSString	*sub1	=	[myString	substringToIndex:7];		
•  NSString	*sub2	=	[myString	substringFromIndex:4];	

v  Substring	using	a	range	
NSRange	r;	
r.loca;on	=	4;		
r.length	=	2;	
	NSString	*sub3	=	[myString	substringWithRange:r];	

v  search	a	string	for	a	substring	returns	a	range	
NSRange	searchRange	=	[myString	rangeOfString:@"Five"];		
if	(searchRange.loca;on	!=	NSNotFound)		
NSLog(@"Range	loca;on:	%d,	length:	%d",	searchRange.loca;on,	

searchRange.length);	

v  replace	a	subrange	with	a	new	string	
•  NSString	*replaced	=	[myString	

stringByReplacingOccurrencesOfString:	@"	"	withString:	@"	*	"];		
	

v  Change	string	case	
•  [myString	uppercaseString];		
•  [myString	lowercaseString]);		
•  NSLog(@"%@",[myString	 	capitalizedString]);	

v  compare	and	test	strings		
•  [s1	isEqualToString:s2]	,	[s1	hasPrefix:@"Hello"]		
•  [s1	hasSuffix:@"Hello"]		

v  Convert	strings	into	numbers	by	using	a	value	method		
•  [s1	intValue],	[s1	boolValue]);	NSLog(@"%f",	[s1	floatValue]);	NSLog(@"%f",	[s1	doubleValue]);	

v Mutable	string	
•  NSMutableString	*myString	=	[NSMutableString	stringWithString:	@"Hello	World.	"];	
•  	[myString	appendFormat:@"The	results	are	%@	now.",	@"in"];		

		
	

NUMBERS	AND	DATES 	v NSNumber	class	
•  NSNumber	*number	=	[NSNumber	numberWithFloat:3.141592];		
•  NSLog(@"%d",	[number	intValue]);	NSLog(@"%@",	[number	stringValue]);	

v Also:		
•  		numberWithInt,	numberWithFloat:,	numberWithBool		

	

WORKING	WITH	DATES 	
v NSDate	objects	-		use	number	of	seconds	since	an	epoch	(midnight	on	January	1,	

2001.)(Unix	epoch	is	midnight	on	January	1,	1970).	

v  Current	;me		
•  NSDate	*date	=	[NSDate	date];	/	

v  	Time	rela;ve	to	current	(10	sec	from	now)	
•  	date	=	[NSDate	dateWithTimeIntervalSinceNow:10.0f];	

v  Show	Date	
•  NSLog(@"%@"	[date	descrip;on]);	
•  Use	NSDateFormaoer	class	

v  	

	

	

TIMERS 	

v NSTimer	class	
•  [NSTimer	scheduledTimerWithTimeInterval:	1.0f	target:	self	

selector:	@selector(handleTimer:)	userInfo:	nil	repeats:	YES];	

v Disable	;mer	
•  send	it	the	invalidate	message	

•  [;mer	invalidate];		

INDEX	PATHS 	

v NSIndexPath	Class	

v  Stores	the	sec;on	and	row	number	for	a	user	selec;on	in	tables	

v  indexPath.row	and	indexPath.sec;on	proper;es	

ARRAYS	

v NSArray,	NSMutableArray	classes	that	hold	any	type	of	object	
•  NSArray	*array	=	[NSArray	arrayWithObjects:@"One",	@"Two",	@"Three",	nil];	

v  	array.count,	[array	objectAtIndex:0],	arrayWithArray:		addObject:	

removeObjectAtIndex:,	arrayWithArray:	arrayByAddingObjectsFromArray:	

containsObject:,		

v  Convert	an	array	to	string	
•  [array	componentsJoinedByString:@"	"]);	

	

DICTIONARIES 	v NSDic;onary,	NSMutableDic;onary,	classes	

v  Create	a	dic;onary	
NSMutableDic;onary	*dict	=	[NSMutableDic;onary	dic;onary];	
	[dict	setObject:@"1"	forKey:@"A"];	

v  Search	a	dic;onary	
[dict	objectForKey:@"A“];	

v  Remove	objects	
[dict	removeObjectForKey:@"B"];	

v  List	keys	
•  [dict	allKeys];	

	

SET 	OBJECTS 	

v NSSet		class	

v Access	set	objects:	
•  [aSet	allObjects];	

v Arrays,	sets	and	dic;onaries	automa;cally	retain	objects	when	they	

are	added	

v And	release	those	objects	when	they	are	removed	from	the	

collec;on.	

v  	Releases	are	also	sent	when	the	collec;on	is	deallocated.		

v  Collec;ons	do	not	copy	objects.		

v  They	rely	on	retain	counts	to	hold	onto	objects	and	use	them	as	

needed.	

v  Write	collec;ons	to	files	(NSArray,	NSDic;onary)		
•  writeToFile:	atomically:		
•  Objects	must	be	of	type:	NSData,	NSDate,	NSNumber,	NSString,	NSArray,	and	

NSDic;onary	

v  To	recover	an	array	or	dic;onary	from	file	

•  NSArray	*newArray	=	[NSArray	arrayWithContentsOfFile:path];		
•  And		dicKonaryWithContentsOfFile:	

v NSURL	objects	point	to	resources.		
•  These	resources	can	refer	to	both	local	files	and	to	URLs	on	the	
Web.		

•  NSURL	*url1	=	[NSURL	fileURLWithPath:path];		for	a	file	
•  NSString	*path	=	[NSHomeDirectory()	stringByAppendingPathComponent:@"Documents/foo.txt"];		

•  NSURL	*url2	=	[NSURL	URLWithString:urlpath];		for	the	web	
•  NSString	*urlpath	=	@"hop://neu.edu";		

v NSData	objects	correspond	to	buffers.		

v NSData	provides	data	objects	that	store	and	manage	bytes.	

•  NSData	*data	=	[NSData	dataWithContentsOfURL:url2];		

