A modern-person’s

guide to iPhone code

development:

.*C %

YE OLDE PROGRAMMING
- LANGUAGES

[Simula 67 Loes

1991

[Python }
C++
1993

[Ruby]
1995

[Java

2006

1980

Objective C J — | Objective C 2.0

i

9

[Smalltalk-80

Source: Computer Languages Timeline * ﬁtty//www,[ezvenez.com/[ang/

7) e G2 NS & N

&
» » \

{

WHAT IS OBJECTIVE-C?

)

1\:'.3)‘. y,
An object oriented language which lies on top of the C language .

Its primary use in modern computing is on Mac OS X as a desktop
language and also on iPhone OS (or as it is now called: iOS).

It was originally the main language for NeXTSTEP OS, also known as
the operating system Apple bought and descended Mac OS X from,
which explains why its primary home today lies on Apple’ s operating
systems.

Because any compiler of Objective-C will also compile any straight C
code passed into it, we have all the power of C along with the power
of objects provided by Objective-C.

o CTONNN

Y /4

PRIMITIVES

o W,
% The usual C Types

* int, float, ...

% It’ s own boolean (ObjC forked before C99)

e BOOL
e Takes values NO=0 and YES=1

** Some special types
* id, Class, SEL, IMP
* nil is used instead of null.

t

{

4

STRINGS

)
)

Y it
(o R

% Always use (NSString *) instead of C Strings
* Inline:
@"This is aninline string";
* Assigned:

NSString *str = @"This is assigned to a variable";

% leaving out the @, canses a crash!

% Odbjective C Pointers aren’t abstracted, like java is. 1.ook at

this, in the notes!

o CTONNN

You must define constant
strings this way, lest you
incite a programmic crash

INTERFACE AND
IMPILEMENTATION

)

A~
'Laﬂ‘h /

% A simple class in Objective-C , by default, has two files:

% The implementation file which is a file that ends with a suffix of .m

** 'The interface file which is a file that ends with a suffix of .h.

CLASS DECILLARATION

W

Class name l I Parent class name

@interface MyClass : NSObject
{

Member variable | int count;
declarations id data;

NSString* name;

¥
’c\iﬂeitlr:';l?gtions [- (id)initWithString:(NSString*)aName;

+ (MyClass*)createMyClassWithString: (NSString*)aName;
" @end

T NN

\/

INTERFACE

)

G A
#import <COCOA Cocoa.h>

@interface Person : NSObject {

//This is where attributes go
NSString *name;
NSNumber *age;
NSString *address;

}

//This is where methods go
- (void)updageAddress;

@end

A sys‘wm a[fowingfor tﬁe C[QC[&TCIU:OH (f c(ases GLHC[metﬁods

Jde CZ W

»

IMPORTING THE
INTERFACE

)

A~
'Laﬂ‘h /

% The interface file must be included in any source module that

depends on the class interface

% The interface is usually included with the #import directive.

N e B N)

REFERRING TO OTHER
CILASSES

)

-~
1’\, 3}. /

% An interface file declares a class and, by importing its superclass,
implicitly contains declarations for all inherited classes, from

NSObject on down through its superclass.

% If the interface mentions classes not in this hierarchy, it must

import them explicitly or declare them with the @class

directive:

@class SyFy, FlyingMachine;

YN

Y /4

IMPLEMENTATION

[

Y it
(o s O

#import
@implementation Person

—(void) updateAddress {

// code goes here to add gas

}
@end

MESSAGES

)

A~
'Laﬂ‘h /

% Method Calling v. Message Passing

%* In Objective-C, we call object methods by passing messages.
% A message is sent to the instance

% The message is the method we want to apply.

% Programmatically it looks like this:

message|];

YN

% With *No* arguments
[object message];
[aPerson init];

% With *1* Argument
[object message: 17
[aPerson initWithLast: 17

% With *2* arguments
[object message: arg2s

[aPerson initWithLast: andFirst:

o CTONNN

Y /4

MORE ON MESSAGES

G0
“* Messages can be sent to classes:
[Person alloc];

“* Messages can be nested:

Person* p = [[Person alloc]
initWithName 1;
* Equal to:
Person* p = [Person alloc];
[p initWithName Ji;

A crucial difference between function calls and messages is that a function and its

arguments are joined together in the compiled code, but a message and a receiving
. b

object aren t united until the program is running and the message is sent.

Therefore, the exact method that’ s invoked to respond to a message can only be
determined at runtime, not when the code is compiled.

) DR ~ NN iy

x "

METHOD DECLARATION

Return type -
M Method type |» Method signature keywords

identifier
' y
- (void)insertObject:(id)anObject atIndex:(NSUInteger)index

— —

[Parameter types

{ Parameter names

\ N e

»

METHODS

)

A
'Laﬂ‘h /

¢ Define a method:
- (id)initWithFirst:(NSString™*)firstName

andLast:
(NSString™)lastName;

- Call a method:

[aPerson initWithFirst:
andLast

YN

CLASS EXAMPLES
G
NSString is a string of text that is immutable.
NSMutableString is a string of text that is mutable.
NSArray is an array of objects that is immutable.
NSMutableArray is an array of objects that is mutable.

NSNumber holds a numeric value.
If an object is immutable that means when we create the object and

assign a value then it is static. The value can not be changed.

If an object is mutable then it is dynamic, meaning the value can be
changed after creation.

Oﬁjecu’ve-C 6{065 not ﬁa\/e S ntax to marﬁ cfasses as aﬁstmct, nor @65 it JOT' event yOLL;
from creau’ng an instance of an GESU’@CI' cfass.

TS T IR SR

»

Y /4

OBJECT TYPING

A
(o 2.

Every object is of type
id
General type for any kind of object regardless of class
Can be used for both instances of a class and class objects themselves.
As a pointer to the instance data of the object.
id person; (dynamic typing)

Can declare a more specific type:

Person* person; (static typing)

o CTONNN

TYPE INTROSPECTION

)

-~
1’\, 3}. /

% Instances can reveal their types at runtime.

% isMemberOfClass: defined in the NSObject class, checks whether

the receiver is an instance of a particular class.

if ([anObject isMemberOfClass:someClass])
% isKindOfClass: checks more generally whether the receiver inherits
from or 1s a member of a particular class (whether it has the class

in its inheritance path):
if ([anObject isKindOfClass:someClass])

Ae G NN

»

DYNAMIC TYPING

[

-~
1’\, 3}.)

The id type is completely nonrestrictive. By itself, it yields no
information about an object, except that it is an object.

A program typically needs to find more specific information
about the objects it contains.

Each object has to be able to supply it at runtime.

The 75z instance variable identifies the object’ s class—what
kind of object it is.

Objects with the same behavior (methods) and the same
kinds of data (instance variables) are members of the same
class.

YN

: i

EQUIVALENT
STATEMENTS

[

A
(o *_/

R/

% Person *p = [[Person alloc] lnlt];

o/

% id p= [[Person alloc] init];

N e B N)

POINTERS AND
INITIALIZATION

Y it
(o s O

int main (int argc, const char * argv[]) {
NSString *testString;
testString = [[NSString alloc] init];
testString = @“This is a test string !";
NSLog(@"testString: %@", testString);
return 0;

Y /4

CREATING INSTANCES

Y it
(o s O

“*Objective-C has a lot of conventions that are not
enforced by the compiler:

s Allocates memory and returns a pointer.
+(id)alloc;
s Initializes the newly allocated object.
-(id)init;
The alloc method dynamically allocates memory for the new
object” s instance variables and initializes them all to 0—all, that

isl, except the isa variable that connects the new instance to its
class.

YN

NSLOG COMMON STRING FORMAT
SPECIFIERS

G &)
Objective-C object using the description or descriptionWithLocale: results
The “%” literal character %d Signed integer (32-bit)
Unsigned integer (32-bit)
Floating-point (64-bit)
Floating-point printed using exponential (scientific) notation (64-bit)
Unsigned char (8-bit)
Unicode char (16-bit)
Null-terminated char array (string, 8-bit)
Null-terminated Unicode char array (16-bit)
Pointer address using lowercase hex output, with a leading Ox
Lowercase unsigned hex (32-bit)

Uppercase unsigned hex (32-bit)

o CTONNN

Y /4

THE SCOPE OF INSTANCE VARIABLES

)

1\:'.3)‘. y,
s @private

 The instance variable is accessible only within the class that declares
it.

s @protected — (default)

e The instance variable is accessible within the class that declares it and
within classes that inherit it.

s @public
 The instance variable is accessible everywhere.
s @package
* Using the modern runtime, an @package instance variable acts like

@public inside the image that implements the class, but @private
outside.

*»» By default, all unmarked instance variables _gre @protected.

P Gy DS e

» »

Y /4

INITIALIZING A CLASS OBJECT

)

(:"x}.)
**If a class makes use of static or global variables, the

initialize method is a good place to set their initial values.

+ (void)initialize {
if (self == [ThisClass class]) {
// Perform initialization here. ...

}
}

Because of inheritance, an initialize message sent to a class that doesn’ t
implement the initialize method is forwarded to the superclass, even though
the superclass has already received the initialize message.

Qe Z NN Qe E N

» » \

=

i

9

CLASS NAMES IN SOURCE
CODE

1\:'.3)‘. ‘jl
¢ The class name can be used as a type name for a kind of object
Rectangle *anObject;
¢ As the receiver in a message expression, the class name refers to the

class object
if ([anObject isKindOfClass:[Rectangle

c/ass]])
s If you don’t know the class name at compile time but have it as a
%mgtat runtime, you can use NSClassFromString to return the class
jec

NSString *className; ...
if ([anObject isKindOfClass:NSClassFromString(className)])
¢ You can test two class objects for equality using a direct pointer

comparison.
if ([objectA class] == [objectB class]) { //...

YN

VARIABLES AND CLASS OBIJECTS

(>/
** For all the instances of a class to share data:
<,

** The simplest way to do this is to declare a variable in the class implementation file:

int MCLSGlobalVariable;
@implementation MyClass

** In a more sophisticated implementation, declare a variable to be static, and provide

class methods to manage it.

/7

** Declaring a variable static limits its scope to just the class—and to just the part of

the class that’ s implemented in the file.

X/

%+ Unlike instance variables, static variables cannot be inherited by, or directly

manipulated by, subclasses.

Y /4

PROPERTY AND SYNTHESIZE

B
1’\ ° 3}.)

@interface Person : NSObiject {

//This is where attributes go

NSString *name; These all need
NSNumber *age; _ Setters and Getters
NSString *address;

}
@end

@interface Person : NSObject {

//This is where attributes go
NSString *name;

NSNumber *age;

NSString *address;

}

@property(readwrite, retain) NSString® name;
@property(readwrite, retain) NSString* address
@property(readwrite, retain) NSNumber* age;

@end

+* Think of a property as a compiler macro that generate the getter and
setter for you.

> \

@implementation Person
@synthesize name,age, address;

}...
@end

s @property replaces all of the interface method
declarations for getters and setters,

s @synthesize replaces the actual methods
themselves.

Y /4

PROPERTY ATTRIBUTES

o W,
@property (readonly) int key;
@property (nonatomic, retain) NSString *title;

@property (nonatomic, copy) NSString *first_name;

Format:
@property (attributes) type name;

Weritability
readwrite (default)
readonly

Setter Semantics

assign (default)

retain

copy

Atomicity

nonatomic

(no “atomic” attribute
i but this is the default)

Q ‘ Source:
\x

CALLING PROPERTIES

[

P
(o *_/

@property (nonatomic, copy) NSString*name;

Use “dot notation” : i
person.name = @ John Smith";

a = person.name;
Or Message passing:

[person setName: @ John Smith"];
a = [person getName];

YN

USING DOT SYNTAX

)
)

A
G A&
Use dot syntax to invoke accessor methods using the same pattern as accessing structure elements.

mylnstance.value = 10;

— which is equivalent to:
[mylnstance setValue:10];
You can read and write properties using the dot (.) operator
* Accessing a property property calls the get method associated with the property (by default, property)
* Setting it calls the set method associated with the property (by default, setProperty:).

* An advantage of the dot syntax is that the compiler can signal an error when it detects a write to a
read-only property, whereas at best it can only generate an undeclared method warning that you

invoked a non-existent setProperty: method, which will fail at runtime.

'd
Q \ * There is one case where properties cannot be used:
N\

= vy.z; // z is an undcelesadaproperty

e / AN Ne

»

- Q w1 9 S
you want to access a property of self using accessor methods, you must explicit
belf as illustrated in this example:

self.age = 10;

)

A
'Laﬂ‘h /

If you do not use self., you access the instance variable directly.

In the following example, the set accessor method for the age property 1s 7o invoked

age = 10;

If a nil value 1s encountered during property traversal, the result is the same as sending

g ¢ cquivalent message to nil.

Q?

(s

4

Y /4

MEMORY MANAGEMENT

)

-~
1’\, 3}. /

*¢ In Objective-C there are two methods for managing memory:

* Reference counting -- Manual-
depends on code added by the programmer

* Garbage collection. -- Automatic —
* system automatically managing the memory. —
* Not available on iPhone.

OBJECT LIFECYCLE

RefCountT+1 T+1 l 1 l 1

Op: +alloc - init - retain - release - release

main() Create array initialize Release from use

Retain for use Release from use

my_func()

) RO A NN DR

» »

N e B N)

AUTORELEASE AND
AUTORELEASE POOLS

)

NSAutoreleasePool * pool [[NSAutoreleasePool alloc] init];

e
S
[pool drain]; ~

When the autorelease message 1s sent to an object, that object 1s then
added to the inner most auto release pool

When the pool 1s sent the drain (i.e. release) message, then all the
objects sent the autorelease message are released

Autorelease defers the release until later.
You may nest as many autorelease pools as you need.

The inner autorelease pool has absolutely no effect on the outer
autorelease pool

YN

“

Q

{

4

RETAINCOUNT
G &
A method we can use to see how many references an
object has.

Can be used as follows:
NSLog(@"retainCount for person: %d", [person retainCount]);

J

** No need to pay too much attention to retainCount, best
practice:

** When you want an object, retain (or alloc) it.

** When you are done with an object, release it.

»

) ANE Z NN

WHEN IS AN OBJECT
DESTROYED?

)

A~
'Laﬂ‘h /

S When it’s retain count reaches 0,
then the deconstructor - dealloc is called

% Never call dealloc yourself - this is always called automatically for yon.

% (Except when you re calling [super dealloc] from within your dealloc
umplementation)
- (void)dealloc {
[super dealloc];

[name release];
[address release];

YN

PROTOCOLS

-~
1’\ ° 3}.)

s A protocol declares methods that can be implemented by any

class.
** Protocols are not classes themselves.

¢ They simply define an interface that other objects are

responsible for implementing.

** When you implement the methods of a protocol in one of your

\Ze classes, your class is said to conform to that protocol.

Q

{

7 % =Y Ty

@protocol MyProtocol
- (void)myProtocolMethod;
@end

¢ protocols do not have a parent class

/7

+* they do not define instance variables

@interface MyClass : NSObject <UIApplicationDelegate, MyProtocol > {

}
@end

/

** Protocol methods can be marked as optional using the @optional keyword. Or
required using @required keyword to formally denote the semantics of the

default behavior.

s The default is @required, if no keyword is specified.

o CTONNN

Y /4

CATEGORIES

)

-~
1’\, 3}. /

¢ Allow us to add methods to an existing class, so that all
instances of that class in the application gain the added

functionality.
s* They are different from subclassing
% Categories don’ t allow you to use instance variables.

/7

%* it is possible to overwrite a method already in place

o CTONNN

CATEGORY SYNTAX

)
)

G A
@interface ClassNameHere (category)
// method declaration(s)
@end
The implementation looks like this;
@implementation ClassNameHere (category)
// method implementation(s)
@end

File naming convention following the pattern of the name of the class we are
adding a category to, a plus sign, and the name of our category.

e Z N

»n

t

(s

4

Y /4

CATEGORY EXAMPLE

G0
@interface NSString (reverse)

-(NSString *) reverseString;
@end

For the implementation:
@implementation NSString (reverse)

- (NSString *)reverseString {

}
@end

The two files created are named: NSS#ing+reverse.h (interface)
And NSString+reverse.m (implementation).

EXTENSIONS

)

A
'Laﬂ‘h /

% Class extensions are like “anonymous” categories, except that

the methods they declare must be implemented in the main

@implementation block for the corresponding class.

@interface MyObject ()
- (void)setNumber: (NSNumber *)newNumber;
@end

c?

{

CREATING A SINGLETON

- €
static MySingleton¥* sharedSingletoﬂ”= nil;
+ (MySingleton *) sharedSingleton {
if (sharedSingleton == nil) {
sharedSingleton=[[superallocWithZone:NULL]init];

}

return sharedSingleton ;

b

+ (id)allocWithZone: (NSZone *)zone { return [[self

sharedSingleton] retain]; }
- (id)copyWithZone: (NSZone *)zone { return self; }

(id)retain { return self; }

(NSUInteger)retainCount {
return NSUIntegerMax; //denotes an object that cannot be

released

(void)release { //do nothing }
(id)autorelease { return self; }

T e 2%, NN

)‘ "t

FAST ENUMERATION

)

1\:'.3)‘. Y,
¢ Fast enumeration is a language feature that allows you to

efficiently and safely enumerate over the contents of a collection

using a concise syntax.

¢ The syntax is defined as follows:

for (Type newVariable in expression) { statements }

O
% Or
Type existingltem:;
for (existingltem in expression) { statements }
Ex:

for (NSString *element in array){
NSLog(@"element: %@", element);

}

Jde CZ W

»

SELECTORS

% Has two meanings:

Used to refer to the name of a method when it’ s used in a
source-code message to an object.

Also used to refer to the unique identifier that replaces the name
when the source code is compiled.

Compiled selectors are of type SEL.
All methods with the same name have the same selector.

You can use a selector to invoke a method on an object

this provides the basis for the implementation of the target-action design pattern in Cocoa.

YN

% Instead of using full ASCII names , the compiler writes each method
name into a table, then pairs the name with a unique identifier that

represents the method at runtime.

% The runtime system makes sutre each identifier is unique: No two selectors

are the same, and all methods with the same name have the same selectot.

% Compiled selectors are assigned to a special type, SEL, to distinguish them

from other data

NN

SEL setWidthHeight;
setWidthHeight = @selector(setWidth:height:);
The performSelector:, performSelector:withObject:, and

performSelector:withObject:withObject: methods, defined in the
NSObject protocol, take SEL identifiers as their initial arguments

setWidthHeight = NSSelectorFromString(aBuffer);
NSString *method;

method = NSStringFromSelector(setWidthHeight);

G
9/5 I??.\{‘, . gﬁ\.') 1 \@.\f

Dbjective-C’ s exception support revolves around four

gwmpiler directives: @try, @catch, @throw, and @finally’\g§

2 fy®

Can re-throw the caught exception using the @throw

rective without an argument inside a @catch() block
can throw any Objective-C object as an exception objec

*The NSException class provides methods that help in

gxception processing, but it can be customized to

=

SYNCHRONIZING THREAD
EXECUTION

)
)

A~
(o R

** Objective-C supports multithreading in applications.

«» Two threads can try to modify the same object at the same time, a situation that can cause serious

problems in a program.

*» To protect sections of code from being executed by more than one thread at a time, Objective-C
provides the @synchronized() directive.

- (void)criticalMethod {
@synchronized(self) {
// Critical code. ...
}
}
«» The @synchronized() directive takes as its only argument any Objective-C object, including self

@,

** This object is known as a mutual exclusion semaphore or mutex.

o CTONNN

N\\sa0 s/

¢ The Objective-C synchronization feature supports recursive and

reentrant code

¢ A thread can use a single semaphore several times in a recursive
manner; other threads are blocked from using it until the thread

releases all the locks obtained with it

¢ When code in an @synchronized() block throws an exception, the
Objective-C runtime catches the exception, releases the semaphore
(so that the protected code can be executed by other threads), and

re-throws the exception to the next exception handler.

o CTONNN

IMPORTANT FOUNDATION
CLASSES

G AR

s Strings
* The NSString class

+* Numbers and Dates
* Unlike standard C floats, integers, and so forth, these elements
are all objects
’ 3
%* Collections

* arrays, dictionaries, and sets.

b

N e B N)

NSString *myString = @"A string constant";

NSString *myString = [NSString stringWithFormat: @"The number is %d", 5
NSLog(@"%®@", [myString strir};gB\;{AppendingString:@"22"]);
NSLog(@"%@", [myString stringByAppendingFormat:@"%d", 22]);
NSLog(@"%d", myString.length); //length

printf("%c", [myString characterAtindex:2]);

Convert to C-String:
o printf("%s\n", [myString UTF8String]); printf("%s\n",
* [myString cStringUsingEncoding: NSUTF8StringEncoding]);

Convert to NSString:
[NSString stringWithCString:"Hello World" encoding: NSUTF8StringEncoding]

Y /4

¢ Write a string to a file:

* [myString writeToFile:path atomically:YES encoding:NSUTF8StringEncoding
error:&error]
G
¢ Reading a string from a file:
* NSString *inString = [NSString stringWithContentsOfFile:path
encoding:NSUTF8StringEncoding error:&error];

¢ Split a String:

* NSString *myString = @"One Two Three Four Five Six Seven"; NSArray
*wordArray = [myString componentsSeparatedByString: @" "];

** Substrings
NSString *subl1 = [myString substringTolndex:7];
NSString *sub2 = [myString substringFromIndex:4];

o CTONNN

Y /4

¢ Substring using a range
NSRange r;
r.location = 4;
1\:'.3)‘. y,
r.length = 2;
NSString *sub3 = [myString substringWithRange:r];

¢ search a string for a substring returns a range
NSRange searchRange = [myString rangeOfString: @"Five"];
if (searchRange.location != NSNotFound)

NSLog(@"Range location: %d, length: %d", searchRange.location,
searchRange.length);

¢ replace a subrange with a new string

* NSString *replaced = [myString
stringByReplacingOccurrencesOfString: @" " withString: @" * "];

o CTONNN

14

- Q w1 9 S
(Jm" :\-.. . %“ ‘ \ 3 /
* [myString lowercaseString]);
* NSLog(@"%@",[myString capitalizedString]);

ompare and test strings

* [s1isEqualToString:s2], [s1 hgsP‘(;eﬁ;(:@"Hello”]
» [s1 hasSuffix:@"Hello"] b

Convert strings into numbers by using a value method
* [s1intValue], [s1 boolValue]); NSLog(@"%f", [s1 floatValue]); NSLog(@"%f", [s1 doubl

Mutable string

* NSMutableString *myString = [NSMutableString stringWithString: @"Hello World. "];
* [myString appendFormat:@"The results are %@ now.", @"in"];

Y /4

ISNumberclass NUMBERS AND DATES

* NSNumber *number = [NSNumber numberW|thFIoat 3.141592];
* NSLog(@"%d", [number intValue]); NSLog(@"‘V@" [number stringValue]);

* numberWithint, numberWithFloat:, numberWithBool

o0 SRR ooz

SDate objects - use number of seconds since an epoch (midnight on January

.)(Unix epoch is midnight on January 1, 1970).

L an 6)
3% Current time G R

* NSDate *date = [NSDate date]; /

Time relative to current (10 sec from now)
* date = [NSDate dateWithTimelntervalSinceNow:10.0f];

Show Date

* NSLog(@"%@" [date description]);
e Use NSDateFormatter class

TIMERS

o W,
** NSTimer class

* [NSTimer scheduledTimerWithTimelnterval: 1.0f target: self
selector: @selector(handleTimer:) userinfo: nil repeats: YES];

¢ Disable timer

* send it the invalidate message

* [timer invalidate];

INDEX PATHS

A
(o >/

+* NSIndexPath Class

+* Stores the section and row number for a user selection in tables

¢ indexPath.row and indexPath.section properties

¥
£
«_»

:
NG

SArray, NSMutableArray classes that hold any type of object
* NSArray *array = [NSArray arrayWithObjects:@"One", @"Two", @"Three", nil];

Y array.count, [array objectAtindex:0], arrayWithArray: addObject:
£ ¢

gBe moveObjectAtindex:, arrayWithArray: arrayByAddingObjectsFromArray:

ntainsObject:,

Convert an array to string

* [array componentsloinedByString:@" "]);

DICTIONARIES

SDictionary, NSMutableDictionary, es

'Y 1)’.’9 D,
o, = et
o5 Create a dictionary

NSMutableDictionary *dict = [NSMutableDictionary dictionary];
[dict setObject:@"1" forKey:@"A"];

Search a dictionary
[dict objectForKey:@"A“];

Remove objects
[dict removeObjectForKey:@"B"];

List keys
* [dict allKeys];

SET OBJECTS

[

A
(o :

+* NSSet class

¢ Access set objects:

» [aSet allObjects];

\/

¢ Arrays, sets and dictionaries automatically retain objects when they

are added

¢ And release those objects when they are removed from the

collection.

** Releases are also sent when the collection is deallocated.
¢ Collections do not copy objects.

¢ They rely on retain counts to hold onto objects and use them as

needed.

¢ Write collections to files (NSArray, NSDictionary)
* writeToFile: atomically:

* Objects must be of type: NSData, NSDate, NSNumber, NSString, NSArray, and
NSDictionary

¢ To recover an array or dictionary from file

* NSArray *newArray = [NSArray arrayWithContentsOfFile:path];
* And dictionaryWithContentsOfFile:

** NSURL objects point to resources.
* These resources can refer to both local files and to URLs on the
Web.
 NSURL *urll = [NSURL fileURLWithPath:path]; for a file

NSString *path = [NSHomeDirectory() stringByAppendingPathComponent: @"Documents/foo.txt"];

e NSURL *url2 = [NSURL URLWithString:urlpath]; for the web
* NSString *urlpath = @"http://neu.edu";

Jde CZ W

»

\/

¢ NSData objects correspond to buffers.

» NSData provides data objects that store and manage bytes.
 NSData *data = [NSData dataWithContentsOfURL:url2];

