The Cricket Indoor Location System

Hari Balakrishnan

Cricket Project MIT Computer Science and Artificial Intelligence Lab http://nms.csail.mit.edu/~hari http://cricket.csail.mit.edu

Joint work with Bodhi Priyantha and others

Outline

- Some Cricket applications
- Cricket architecture
- Distance and location estimation
- Other features, status, demo

Cricket

A general-purpose indoor location system for mobile and sensor computing applications

Indoor Human/Robot Navigation

Virtual/Physical Games

Rudolph et al., MIT Project Oxygen

Hospital Applications

Tracking patients and equipment in hospitals

Location-Aware Sensing

- Networked sensors enable remote monitoring and control
 - Asset tracking
 - Environmental monitoring
 - Supply chain
 - Remote actuation
- Sensor streams need to be annotated with *location*

Temperature, light, sound sensors, buzzer

Outline

- Applications
- Cricket architecture
- Distance and location estimation
- Other features, status, demo

Location = Space, Position, Orientation

- Space: Rooms, parts of rooms
- Position: (x, y, z) coordinates
- Orientation: Direction vector

Design Goals

- Must work well indoors
- Must scale to large numbers of devices
- Should not violate user location privacy
- Must be easy to deploy and administer
- Should have <u>low energy</u> consumption

Cricket Architecture

Passive listeners + active beacons scales well, helps preserve user privacy Decentralized, self-configuring network of autonomous beacons

SPACE = NE43-510 COORD = (146 272 0)

Obtain linear distance estimates
Pick nearest to infer "space"
Solve for device's (x, y, z)
Determine θ w.r.t. each beacon and deduce orientation vector

Determining Distance

 The listener measures the time gap between the receipt of RF and ultrasonic (US) signals

Velocity of US << velocity of RF

Distance Measurement Performance

• Error increases with d and θ

- Signal gets weaker with increasing d and θ
- Takes longer to detect at listener
- Errors are on the order of US wavelength

Multiple Beacons Cause Complications

Beacon transmissions are uncoordinated

 Ultrasonic pulses reflect off walls
 These make the correlation problem hard and can lead to incorrect distance estimates
 Solution: Beacon interference avoidance + listener interference detection

Solution (Part 1): Beacon Interference Avoidance

- Use carrier-sense + randomized transmission at each beacon
 - Listen-before-transmit
 - Delay for random time in [T1, T2], then xmit
- Engineer RF range to be > 2x US range (approx.)
- Idle time between beacon chirps to allow US signal to "die down" (50 ms)
 - Upon hearing any RF xmission, delay for 50 ms
- Result: No "US interference" pattern possible (if carrier sense works)

RFA

US B

USA

Solution (Part 2): Listener Interference Detection

• "RF interference" still possible

RFA RFB USA

- Solution: Listener counts the number of RF messages during 50 ms before US signal
 - Only one RF? Then, accept
 - More than one? Then, reject

Beacon Interference Detection/Avoidance Performance

- Outliers (>5% error) caused by:
 - RF vagaries: dead spots, fading, imperfect carrier sensing
 - Ultrasonic noise: Jangling keys, faulty lights
- Hence, position estimators need to handle outliers

Space Estimation

- Static outlier detection: MinMode algorithm
- Find mode of each beacon's measured distances over recent time window
- Space = beacon with smallest mode

Position Estimation

- Static case is easy (lateration)
- Mobile case is harder

$$f:\begin{bmatrix} t_{1} & d_{1} & p_{1} \\ t_{2} & d_{2} & p_{2} \\ \vdots & \vdots & \vdots \\ t_{n} & d_{n} & p_{n} \end{bmatrix} \longrightarrow \Re^{3}$$

Samples Position esti

mate

Listener: Extended Kalman Filter

• Single-constraint-at-a-time Kalman filter (similar to Welch et al.)
Predict

Prediction

Sample

Correct

- Handle non-Gaussian errors
 State
- Cope with bad state

• If prediction consistently bad, then reset by active chirp

Prototype

Distance accuracy: 1-5 cm Position accuracy: 10-15 cm Orientation accuracy: 3-5 degrees

Beacon power consumption: 1.5 mA @ 2.7 V Two AA batteries last 6-8 weeks

Embedded software in TinyOS Commercially available

Demo: Tracking a Moving Robot with Cricket

Other Features of Cricket

- Orientation
 - Listener ultrasound array for differential distances
- Filtering and tracking algorithms
- Reducing energy consumption
 - Sleep/wakeup scheduling and hardware optimizations
- Health monitoring and maintenance
- Location API

Conclusion

- Key ideas in MobiCom 2000 paper
 - Active beacons, passive listener
 - Notion of *space* as distinct from position
 - Distributed coordination
 - Handling noise in distance estimates
- Cricket provides location information for mobile & sensor computing applications
 - Accurate space, position, orientation
 - Designed for both handheld and sensor apps
- Passive mobile architecture is scalable and helps preserve user privacy
- Hardware commercially available; software opensource

http://cricket.csail.mit.edu/

Pose-Aware Applications

Software flashlight & marker

Teller et al., MIT Project Oxygen

Orientation

Orientation using Differential Distance

Use phase difference

Differential Distance Estimation

- Problem: for reasonable values of parameters (d, z), (d2 - d1) must have 5 mm accuracy
 - Well beyond all current technologies!

hp stopped