Accurate, Low Energy Trajectory Mapping For Mobile Phones

Arvind Thiagarajan, Lenin Ravindranath, Hari Balakrishnan, Sam Madden, Lewis Girod MIT CSAIL

Goal

• Find the *trajectory* i.e. *sequence of locations* visited by a mobile device

 Applications need to find path both *accurately* and *energy-efficiently*

Traffic Estimation

Crowdsourced Traffic Monitoring

Battery dies in ~6 hours if monitoring with GPS

Bike Routes

http://www.jonathanokeeffe.com/strava/multi-ride-mapper/

TrackMyTour

Allows users to keep track of their trips and annotate them

Running

Trash Track

Context: CarTel Project

Crowdsource tracks to estimate traffic on road segments

Limitation of GPS: Energy

- GPS signals are energy-intensive to acquire & process
- Frequent GPS sampling drains battery fast
- This data is from 2010-11, but the same trends persist today

Approach: Use low-power sensors

Outline

- Prior work
 - Intermittent GPS (Microsoft Krumm et al.)
 - Vtrack uses Wi-Fi data from same group that did the Ctrack work (CarTel project)
- CTrack paper
 - Cellular fingerprints
 - Better energy
 - Accuracy?

Background: Vtrack Algorithm Noisy Data (Wi-Fi example)

The closest road to a position sample is **not** where it originally came from

- Exploit both previous and future location information
- Don't overly weight any one location sample
- Find a continuous (unbroken) sequence of roads

Solution: Hidden Markov Model

 Maps noisy observations (coordinates) to hidden states (underlying road segments)

Dynamic Program Finds Best State Sequence (cf. Viterbi) "Best" => Max Product of Emission and Transition Scores

Emission Score

- Emission Score $E(p_i, S_i) = e^{-d^2/\sigma^2}$ sensor
 - Intuition: pts closer to a segment are more likely to come from it
 - σ_{sensor} depends on GPS/WiFi/Cellular

Transition Score

- Transition Score T(S_i,S_{i+1})
 - 0 if segments are not adjacent or not enough time has been spent on S_i
 - 1 if segments are adjacent and enough time has been spent on S_i
- Speed constraint is essential: because algorithm jumps around and follows noise in the input data without it
 - Decreases error significantly

VTrack In Action

S1 S1 S3 S3 is most likely match

S1 S2 S3 S3 has score 0, isn't permitted (speed constraint)

Handling Gaps: Interpolation

- VTrack's HMM maps input to output samples one-to-one
- We need frequent (1 Hz) input because we want output to be continuous (so we can enforce adjacency constraint)
- Interpolate gaps, *then* run HMM (linear interpolation)

CTrack Problem Statement

- Can we develop techniques to process cellular signal information to produce accurate trajectories?
- How accurate?

CTrack: Accurate Trajectory Mapping with Inaccurate Cellular Signals

- Consumes *no* extra energy
- New techniques achieve good enough accuracy for trackbased apps
 - "75% as accurate as 1 Hz GPS"
 - "As accurate as GPS every 2 minutes"
 - As energy-efficient as GPS every 4 minutes and much more accurate"
 - Over "3x better" than previous cellular (GSM) systems
 - (I'll explain what these mean)
- Optionally, augment with low-energy "sensor hints"
 - Compass to detect turns (15 μ W @ 1 Hz)
 - Accelerometer to detect movement (60 μW @ 10 Hz)

Battery Drain Curve

Android G1 phone

Existing Cellular Location Systems Aren't Good Enough To Find Tracks

- State-of-the-art is "radio fingerprinting" (E.g. PlaceLab)
- OK for best static localization estimate
- But poor at identifying tracks

Existing Map-Matching Algorithms Perform Poorly w/ Cellular Radios

Krumm et al. (SAE World Congress '07), VTrack (SenSys '09)

Existing Map-Matching Algorithms Ok For GPS/WiFi, But Poor For GSM

Key Insight in CTrack

- Do *not* convert radio fingerprints to (lat, lon) coordinates and then sequence them on map
- Instead, first *sequence* GSM fingerprints on a spatial grid
- This insight is crucial: it reduces error by 3x

CTrack FlowChart

Raw points (using Placelab for illustration – Ctrack does not use these "raw" points)

Grid Sequence

Smooth + Interpolate Grid Sequence

Smoothed Grid → Road Segments

CTrack Steps

HMM fingerprints to grid sequence

HMM smooth grid to map

Grid Sequencing

Time	TowerId	RSSI
18.03	334490560	14
	334478599	12
	337772865	18
	334478600	14
	334470539	12
	334490699	12
19.01	• • •	• •

Size of grid = 125 meters Why?

Given a sequence of GSM fingerprints (TowerID, RSSI), what is the most likely sequence of grid cells?

HMM For Grid Sequencing

HMM For Grid Sequencing

Dynamic Programming Finds Best Grid Sequence (cf. Viterbi) "Best" => Max (Emission Score * Transition Score)

Emission Score (Grid Cell G, Fingerprint F)

- Find *closest* matching fingerprint F_{closest} to F in all training data for grid cell G
- Score is *inversely proportional* to "distance" *d* of F_{closest} from F in signal strength space
- Better match => smaller d => higher score

 $d = \lambda * 2 + (d_{max} - 0.5 * sqrt((14-13)^2 + (12-15)^2))$ With $\lambda = 3$ and $d_{max} = 32$, Emission Score = 38 - sqrt(10)/2Normalize this to (0,1] range

Tolerant Transition Score

- Inversely proportional to distance between grid cells
- The score is *very tolerant* of jumps between non-adjacent grid cells
- Necessary to tolerate large outliers/regions of poor coverage in the GSM data

Score = 1/d

Example

Transition Score = 1

Grid Sequencing In Action

Grid Sequencing In Action

Grid Sequencing In Action

CTrack FlowChart

Matching (Lat, Lon) To Segments

Matching (Lat, Lon) To Segments

Extract 0/1 (Binary) Movement and Turn Hints For Each Time Slot

Evaluation

- 125 Hours (312 "Drives")
 - From 16 Android phones
 - Logged GPS ground truth, GSM, accel, compass
- Selected subset of 53 drives (28 hours) as "test drives"
 - Tests lie in dense cov. area
 - Tests have good GPS accuracy
 - Mean drive length: 30-35 mins
- Leave-one-out evaluation
 - Train on all but test, evaluate on test drive

We Compared CTrack To...

- Placelab + VTrack
 - Look up single best matching
 GSM fingerprint for each time
 - Match (lat, lon) using VTrack

- Get a GPS sample every k secs
- Match (lat, lon) using VTrack
- k = 4 min is *energy-equivalent* to CTrack

Evaluation Metrics

Output Of Tracking Algorithm

Ground Truth

Evaluation Metrics

recision materizengen, output Length

Recall = Match Length / Ground Truth Length

CTrack Has 75% Precision: 3x Less Error Than Placelab+VTrack, GPS k

Grid Sequencing Step is Critical

Impact Of Sensor Hints

Makes sense to take advantage of hints when available (i.e. on a smartphone) – they are free in terms of energy!

Conclusion

- CTrack is a *cellular-only system* that:
 - Can recover over 75% of a user's track
 - Significantly (over 3x) better in energy/accuracy tradeoff than existing approaches
- Broader impact
 - Make large scale deployment of location-based apps feasible without running into energy barriers
 - Enable devices without GPS (was: 85% of phone market) to contribute to and benefit from locationbased services
 - Many IoT devices may have cellular or other longrange low-power radios such as LoRaWAN or Sigfox, but no GPS