Inferring Maps from GPS Data

- 1. Why infer maps from GPS traces?
- 2. Biagioni/Eriksson algorithm
- 3. Evaluation metrics
- 4. Similar approaches: satellite images, map update
- 5. Lab 4

Map making

slide 2

Uber is planning on investing \$500 million to map the world's roads

This will reduce Uber's reliance on Google Maps

by Andrew Liptak | @AndrewLiptak | Jul 31, 2016, 5:54pm EDT

Will Your Next New Car Help Build Maps for Self-Driving?

Mobileye will use cameras on a growing list of automakers' cars to build maps for self-driving vehicles.

Why Ford Motor Is Investing in 3D Mapping Startup Civil Maps

Tencent, partners invest in HERE's digital maps to get a leg up on self-driving cars

OpenStreetMap

- Licensed under Open Data Commons Open Database License
- Built using several data sources:
 - U.S. Census Bureau's TIGER data
 - GPS traces
 - Aerial images
- Humans process traces and images to update the map
- Decent coverage in large cities where there are many contributors, but often inaccurate or incomplete elsewhere

Opportunistic data collection

GPS traces, e.g., from smartphone apps, taxis, etc

Challenges

- GPS errors
- Sparsity of data
- Differential sampling rate (1s, 10s, 1m)
- Urban Canyons
- Complex intersections such as roundabouts, highway intersections

Map inference in the face of noise and disparity

Map inference in the face of noise and disparity

"Map inference in the face of noise and disparity." Biagioni, James, and Jakob Eriksson. Proceedings of the 20th International Conference on Advances in Geographic Information Systems. ACM, 2012.

Map inference in the face of noise and disparity

"Map inference in the face of noise and disparity." Biagioni, James, and Jakob Eriksson. Proceedings of the 20th International Conference on Advances in Geographic Information Systems. ACM, 2012.

- 1D Example
 - What does a density estimation based map-inference algorithm look like?
 - What is the problem with it?

- 1D Example
 - What's the problem with this algorithm?

Single threshold doesn't work well

Single threshold doesn't work well

High Threshold

High Threshold

High Threshold

Low Threshold

Low Threshold

Density Estimation - Gray-scale Skeletonization

- Skeletonization with different thresholds, from high to low
- Remain the results from high thresholds
- Assign weights to each pixel

Map inference in the face of noise and disparity

The View of Traces from Density Estimation

More Information if You Consider the Whole Trace

Map Matching

Topology Refinement

Topology Refinement

Well-matched Traversal Goodness of fit

$$RMSD(\tau,e) = \sqrt{\frac{1}{|\tau|}\sum_{p\in\tau}dist(p,e)^2}$$

 $RMSD(\tau, e) < RMSD_{max}$

Topology Refinement

Remove edges with less than two well-matched traversals

$$RMSD(\tau,e) = \sqrt{\frac{1}{|\tau|} \sum_{p \in \tau} dist(p,e)^2}$$

 $RMSD(\tau, e) < RMSD_{max}$

Topology Refinement - Before Pruning

Topology Refinement - After Pruning

Topology Refinement - After Pruning

Topology Refinement - Pruning Again ...

Topology Refinement - Incorrect Topology

Topology Refinement - Collapsed Intersection

Geometry Refinement

Geometry Refinement - Simple Geometry

Geometry Refinement - Refined Geometry

Geometry Refinement - Infer Parallel Road

Geometry Refinement - Infer Parallel Road

Direction Information from Map-matching

Direction Information from Map-matching

Direction Information from Map-matching

Direction Information from Map-matching

Geometry Refinement - Refined Parallel Road

Geometry Refinement - Refined Intersection

Evaluation Metrics

- Geometric evaluation (GEO)
- Graph-Sampling Based Distance (TOPO)
- Shortest Path Based Distance

- Are those two maps the same?
- What's the difference between those two maps?

-000000

Oand Could be matched if the distance between them are within a threshold

— Ground Truth
– − ⊖ − − Inferred Road

Spurious Samples

Geometric evaluation (GEO) Limitation

Graph-Sampling Based Distance (TOPO)

FIGURE 4 Overview of map comparison algorithm. (a) Holes are dropped at even intervals along edges of the ground truth map. (b) Marbles are dropped at even intervals along edges of the generated map. (c) Marbles from generated map fill holes where the maps overlap.

Eriksson, Jakob. "INFERRING ROAD MAPS FROM GPS TRACES: SURVEY AND COMPARATIVE EVALUATION 2 James Biagioni* 3 Ph. D. Student 4 71 Department of Computer Science 5."

Graph-Sampling Based Distance (TOPO)

Graph-Sampling Based Distance (TOPO)

Graph-Sampling Based Distance (TOPO)

Graph-Sampling Based Distance (TOPO) Limitation

TOPO may fail to capture the broken connection

Ahmed, Mahmuda, et al. "A comparison and evaluation of map construction algorithms using vehicle tracking data." GeoInformatica 19.3 (2015): 601-632. 75

Similar Approaches

- Map Update
- Satellite Images

Figure 1. An example of the map update processing

Lab 4

- Implement a simplified clustering-based map inference algorithm
- Design and implement an evaluation metric
- Compare with Biagioni/Eriksson algorithm

k-means Clustering

Images from Wikipedia "k-means clustering^{9,1}

Images from Wikipedia "k-means clustering"³²

Images from Wikipedia "k-means clustering"

Images from Wikipedia "k-means clustering"

Following are some discarded slides

Basic KDE Algorithm - Density Estimation

Basic KDE Algorithm - Density Estimation

• Voronoi diagram

• Voronoi diagram

103

Basic KDE Algorithm - Final Result

104

Basic KDE Algorithm - Final Result

Density Estimation - Gray-scale Skeletonization

Map inference in the face of noise and disparity

Trajectory data is valuable

Density Estimation - Binary Skeletonization

Density Estimation - Gray-scale Skeletonization

Density Estimation - Gray-scale Skeletonization

Density Estimation - Gray-scale Skeletonization

More Information if You Consider the Whole Trace

Geometry Refinement - Initial Cluster Locations

Geometry Refinement - Settled cluster locations

Geometry Refinement - Refined lane geometry

Geometric evaluation (GEO) TODO...

