The Pothole Patrol

6.S062 Spring 2018 Lecture 8 3/6/2018

Balakrishnan & Adib

Based on Slides from Jakob Eriksson

- road decay unavoidable, hard to predict
- current monitoring methods costly/ineffective

the Pothole Patrol

GPS localization

experimental platform

- 7 Boston/Cambridge taxis
- small computer in glove box
- 380 Hz 3-axis accelerometer
- 802.11a/b/g wireless interface
- GPS receiver on roof
- <time,location,heading, speed,ax,ay,az>

wide-area sensing

open WiFi connectivity

P² architecture

sensor placement

challenge: "pothole" v. "not pothole"

pothole v. not pothole

© 2008 Tele Atlas Image MassGIS, Commonwealth of Massachusetts EOEA Buildings © 2008 Sanborn Image © 2008 DigitalClobe

the hard strength

Google *

© 2008 Tele Atlas

Image MassGIS, Commonwealth of Massachusetts EOEA

UNTROPOST STREET OF AUTOMOS

Google

© 2008 Tele Atlas

Image MassGIS, Commonwealth of Massachusetts EOEA

Jun 2007

Sachuse

Eye alt 21 m

B200

Google-

TARALABLINED MER

© 2008 Tele Atlas

Image MassGIS, Commonwealth of Massachusetts EOEA

Google

© 2008 Tele Atlas

Image MassGIS, Commonwealth of Massachusetts EOEA Image © 2008 DigitalGlobe Google

har who and ball

mounder Man and My How were all

© 2008 Tele Atlas

lat 42.361116° lon -71.078797

Jun 2007

Eye alt 11 m

..... Google -

P² detector

Events usually of much shorter duration than 256 samples

hand-labeled training data

- Smooth road (SM): Segments of road surface that are considered smooth.
- Crosswalks and Expansion Joints (CWEJ): Crosswalks using extra-thick paint, brick, strips of pavers, or raised dots. Metal expansion joints in bridges and overpasses.
- Railroad Crossing (RC): Train tracks. Such crossings can be jarring, and are sometimes confused for a disturbed road surface.
- Potholes (PH): Missing chunks of pavement, severely sunk in or protruding manhole covers, other significant road surface anomalies.
- Manholes (MH): Manhole covers and other equipment in the road that are nearly flush with the road surface. Moderate cracking, sinking or bulging.
- Hard Stop (ST): A rapid deceleration, sometimes with the familiar jerk at the end.
- Turn (TU): Turning a corner. This sometimes exhibits a rather violent acceleration profile.

training the detector

• manually label training samples

Type	Count	Percentage
Smooth road (SM)	64	23%
Potholes (PH)	63	23%
Manholes (MH)	59	21%
Railroad Crossing (RC)	18	6%
Crosswalk/Exp. Joint (CWEJ)	76	27%

loosely-labeled training

- needed to avoid over-training with unrepresentative manually curated data
- under-samples "smooth" roads
 - Storrow Dr. Heavily used four-lane parkway on the Boston side of the Charles River with several bridges, some potholes.
 - Memorial Dr. Heavily used four-lane parkway on the Cambridge side of the Charles River, good condition.
 - Binney St. A two-lane street with many sunk-in manholes and sealed cracks, one pothole.
 - Hwy I-93 An 8 lane interstate highway that cuts through the center of Boston in good condition.
 - Beacham St A heavily trafficked back road in very poor condition.

training the detector

• pick an objective function

$$s(\mathbf{t}) = corr - incorr^2$$

- optimize over 3 threshold parameters
 - z-peak
 - xy-ratio
 - speed vs. z-ratio

detector performance

		loosely labeled data
Class	before	after
Pothole	88.9%	92.4%
Manhole	0.3%	0.0%
Exp. Joint	2.7%	0.3%
Railroad Crossing	8.1%	7.3%

E.g., 7.3% of detected "potholes" are railroad

After training on

Note: Actual false positive rate is not 7.6% Why?

estimating false +ve rate

Road	# potholes	#win	#det.	rate
Storrow Dr.	few	1865	3	0.16%
Memorial Dr.	few	1781	2	0.12%
Hwy I-93	few	2877	5	0.17%

-

experiments

- 7 taxis over 10 days
- 9730 total km of road covered
- 2492 unique km of road covered
- 1.4 million sample windows
- 4131 severe detections in 2709 locations (after clustering)

impact of cluster size

48 spot-checks

potholes	39
sunk-in manholes	3
railways and exp. joints	4
undetermined	2

© 2008 Tele Atlas Image MacsCIS, Commonwealth of Massachusetts EDEA

Google*

P²: the Pothole Patrol

- automatic wide-area road quality monitoring
- use of opportunistic mobility
 - mobile sensing w/ delay-tolerant communication
 - machine learning classifier with labeled and loosely-labeled data
 - Data collection and curation is hard!
- low-cost approach to help solve a costly problem