6.S062: Mobile and Sensor Computing

Lecture 6: Wireless Sensing of Breathing, Heartbeats, and Emotions

Ubiquitous Health & Comfort Monitoring

Can smart homes monitor and adapt to our breathing and heart rates?

Can smart homes monitor and adapt to our breathing and heart rates?

Can smart homes monitor and adapt to our breathing and heart rates?

But: today's technologies for monitoring vital signs are cumbersome

Breath Monitoring

Heart Rate Monitoring

Not suitable for elderly & babies

Can we monitor breathing and heart rate from a distance?

Vital-Radio

• Technology that monitors breathing and heart rate remotely with 97% accuracy

Can monitor multiple users simultaneously

 Operates through walls and can cover multiple rooms

Idea: Use wireless reflections off the human body

Idea: Use wireless reflections off the human body

Problem: Localization accuracy is only 12cm and cannot capture vital signs

Why? How did we compute the resolution?

Solution: Use the phase of the wireless reflection

Why does phase allow us to get the distance at higher granularity?

Solution: Use the phase of the wireless reflection

Let's zoom in on these signals

How do we get from here to extracting breathing rate and heart rate?

What happens when a person moves his limb?

What happens with multiple users in the environment?

Reflections from different objects collide <u>Problem:</u> Phase becomes meaningless!

<u>Solution:</u> Use WiTrack as a filter to isolate reflections from different positions

Solution: Use WiTrack as a filter to isolate reflections from different positions

Solution: Use WiTrack as a filter to isolate reflections from different positions

Recall Formulation with FMCW

- Output of FFT with reflectors
- Looked at the amplitude only
- Now will also look at phase

How do we deal with multipath?

Putting It Together

Step 1: Transmit a wireless signal and capture its reflections

Step 2: Isolate reflections from different objects based on their positions

Step 3: Zoom in on each object's reflection to obtain phase variations due to vital signs

Vital-Radio Evaluation

Vital-Radio Evaluation

Baseline:

 FDA-approved breathing and heart rate monitor Chest Strap

Experiments:

- 200 experiments
- 14 participants
- 1 million measurements

Accuracy vs. Orientation

User is 4m from device, with different orientations

Breathing Rate

Accuracy for Multi-User Scenario

Multiple users sit at different distances

Nearest (at 2m)

Middle (at 4m)

Furthest (at 6m)

Accuracy for Tracking Heart Rate

Measure user's heart rate after exercising

Vital-Radio accurately tracks changes in vital signs

Vital-Radio Limitations

- Minimum separation between users: 1-2m
- Monitoring range: 8m
- Collects measurements when users are quasi-static

Baby Monitoring

Works for multiple people and through walls

Breathing & Heart Rate

Want Emotions

Recognizing Human Emotions

Key challenge: Inter-Beat Interval (IBI)

• Emotion recognition needs accurate measurements of the length of every single heartbeat

We need to extract IBI with accuracy over 99%

Input signal

Wireless reflection of the human body

- Breathing masks heartbeats
- We use acceleration filter
 - Heartbeat involves rapid contraction of muscle
 - Breathing is slow and steady

Heartbeat signal

Output of acceleration filter

• ECG signal

Heartbeat signal

• Other typical examples:

How to segment the signal into individual heartbeats?

Manday, And all have all MAL when and Madding and all MAL and Manda and

- Intuition: heartbeat repeats with certain shape (template)
- If we can somehow discover the template, then we can segment into individual heartbeats

Caveat: Shrinking & Expanding

• IBI are not always the same

- Template subject to shrink and expanding
 - Linear warping

Algorithm

Need to recover both segmentation and template

• Joint optimization: minimize $\sum_{\substack{S,\mu\\segmentation}} \|s_i - \omega(\mu, |s_i|)\|^2$

Segmentation Update

$$S^{l+1} = \arg \min_{S} \sum_{s_i \in S} \|s_i - \omega(\mu^l, |s_i|)\|^2$$

(dynamic programming)

Template Update

$$\boldsymbol{\mu}^{l+1} = \arg\min_{\boldsymbol{\mu}} \sum_{s_i \in \mathcal{S}^{l+1}} \|s_i - \boldsymbol{\omega}(\boldsymbol{\mu}, |s_i|)\|^2$$
(weighted least squares)

Algorithm

Need to recover both segmentation and template

• Joint optimization: minimize $\sum_{\substack{S,\mu\\segmentation}} \|s_i - \omega(\mu, |s_i|)\|^2$

Segmentation Update

Template Update

- Both updates have linear complexity
- Each update achieves global optimum
- Iterative algorithm is guaranteed to converge

Iteration 1:

Iteration 2:

Iteration 2:

Iteration 3:

Iteration 3:

Iteration 7:

Iteration 7:

From vital signs to emotions

Physiological Features for Emotion Recognition

- 37 Features similar to ECG-based methods
 - Variability of IBI
 - Irregularity of breathing

Emotion Classification

- Recognize emotion using physiological features
- Used L1-SVM classifier
 - select features and train classifier at the same time

Emotion Model

- Standard 2D emotion model
- Classify into anger, sadness, pleasure and joy

Evaluation

Implementation

- FMCW radio
- 5.5 GHz to 7.2 GHz
- sub-mW power

Median IBI estimation error: 0.4% 90th percentile error: 0.8%

- Ground truth: ECG
- 30 subjects, over 130,000 heartbeats

Can we detect emotions accurately?

• Experiment:

- 12 subjects (6 female and 6 male)
- Prepare personal memories for each emotion
- Elicit certain emotion with prepared memories
- classify every 2 minutes to an emotional state
- Ground truth: self-reported for each 2-min period

Can we detect emotions accurately?

Can we detect emotions accurately?

Person-dependent Classification

• Train and test on the same person

Person-dependent Classification

• Train and test on the same person

Person-independent Classification

• Train and test on the different person

We can recognize a person's emotions without having ever trained on him/her before

Comparison with ECG-based system

