6.S062: Mobile and Sensor Computing

Lecture 4: Device-Free Localization

So Far: Device-based Localization

This Lecture: Using radio signals to track humans without any sensors on their bodies

This Lecture: Using redidsignals to track humans without any senbors on their bodies

- Location
 - Vital Signs
 - Gestures

Operates through occlusions

Example: WiTrack

Applications

Smart Homes

Energy Saving
Gaming \& Virtual Reality

Measuring Distances

Distance $=$ Reflection time x speed of light

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Capturing the pulse needs sub-nanosecond sampling

Why?

Capturing the pulse needs subnanosecond sampling Why?

Multi-GHz samplers are expensive, have high noise, and create large I/O problem

Why was this not a problem for Cricket?

Distance $=$ time \times speed

$10 \mathrm{~cm}=\Delta t^{2} \times c^{133 \times 10^{2}}$

$$
\Delta t=\frac{1}{3} \times 10^{-9}=0.3 \sin 5
$$

$$
\begin{aligned}
& \text { Creket" } \Rightarrow 300 \mathrm{~m} / 5 \text { vs } 311^{3} \\
& \text { ultiasoont } \quad \frac{1}{30^{2}} \quad \Rightarrow 10^{6} \text { slaver } \\
& \text { BKsps }
\end{aligned}
$$

FMCW: Measure time by measuring frequency

Transmitted

* Wires Signal eff frequency

* FMCW (chirp)

FMCW: Measure time by measuring frequency
Transmitted

How do we measure $\triangle F$?

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Power

Signal whose frequency is ΔF

Basics of Boric transform. $\begin{aligned} & \text { time signal } \\ & i \\ & \vdots \\ & i\end{aligned}+$ ค

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

$\Delta F \rightarrow$ Reflection Time \rightarrow Distance

Challenge: Multipath \rightarrow Many Reflections

Static objects don't move

\rightarrow Eliminate by subtracting consecutive measurements

Why 2 peaks when we only have one moving person?

Distance

The direct reflection arrives before dynamic multipath!

Mapping Distance to Location

Person can be anywhere on an ellipse whose foci are ($T x, R x$)

By adding another antenna and intersecting the ellipses, we can localize the person

From Location to tracking

Fails for multiple people in the environment, and we need a more comprehensive solution

Tx
Rx

How can we deal with multi-path reflections when there are multiple persons in the environment?

Idea: Person is consistent across different vantage points while multi-path is different from different vantage points

Combining across Multiple Vantage Points
Experiment: Two users walking
Setup

Single Vantage Point

Mathematically: each round-trip distance can be
mapped to an ellipse whose foci are the transmitter and the receiver

Combining across Multiple Vantage Points

Experiment: Two users walking
Setup

Combining across Multiple Vantage Points

Experiment: Two users walking

Setup

16 Vantage Points

Localize the two users

Multi-User Localization

Experiment: Four persons walking

Setup

All Vantage Points

first person
other people or noise?

Near-Far Problem: Nearby persons have more

 power than distance reflectors and can mask themSetup

four persons

All Vantage Points

first person other people or noise?

Successive Silhouette Cancellation:

 a new algorithm that localizes multiple persons in the scene by addressing the near-far problem
Successive Silhouette Cancellation:

a new algorithm that localizes multiple persons in the scene by addressing the near-far problem

Goal: Recover human reflections

Decode human location

> Model human and reconstruct reflection patterns

First localize the user with the strongest reflection

Cancel the impact of the person's whole body

After reconstructing and cancelling the first user's reflections

Iteratively localize the remaining users in the scene

Iteratively localize the remaining users in the scene

How can we localize static users?

Dealing with multi-path when there is one moving user

We eliminated direct table reflections by subtracting consecutive measurements

Needs User to Move

Dealing with multi-path when there is one moving user

We eliminated direct table reflections by subtracting consecutive measurements

Needs User to Move

Exploit breathing motion for localize static users

- Breathing and walking happen at different time scales
-A user that is pacing moves at $1 \mathrm{~m} / \mathrm{s}$
-When you breathe, chest moves by few mm/s
- Cannot use the same subtraction window to eliminate multi-path

User Walking at 1m/s

30ms subtraction window

Localize the person

3s subtraction window

Person appears in two locations

User Sitting Still (Breathing)

30ms subtraction window

Cannot localize

3s subtraction window

Localize the person

User Sitting Still (Breathing)

30ms subtraction window

3s subtraction window

Use multi-resolution subtraction window to eliminate multi-path while being able to localize both static and moving users

Centimeter-scale localization without requiring the user to carry a wireless device

Localize the two users

Want a silhouette

People are points

Approach: Combine antenna arrays with FMCW to get 3D image

- 2D Antenna array gives 2 angles
- FMCW gives depth (1D)

2D array

Challenge: We only obtain blobs in space

At every point in time, we get reflections from only a subset of body parts.

Solution Idea: Exploit Human Motion and Aggregate over Time

Solution Idea: Exploit Human Motion and Aggregate over Time

Combine the various snapshots

Human Walks toward Sensor

3m

2.5 m

Chest (Largest Convex Reflector)

Use it as a pivot: for motion compensation and segmentation

Human Walks toward Sensor

Combine the various snapshots

Human Walks toward Sensor

Sample Captured Figures through Walls

Through-wall classification accuracy of 90\% among 13 users

