6.S062: Mobile and Sensor Computing

Lecture 4: Device-Free Localization

So Far: Device-based Localization

This Lecture: Using radio signals to track humans without any sensors on their bodies

Example: WiTrack

Device in another room

Applications

Measuring Distances

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Capturing the pulse needs sub-nanosecond sampling

Capturing the pulse needs subnanosecond sampling Why?

Multi-GHz samplers are expensive, have high noise, and create large I/O problem

Why was this not a problem for Cricket?

Sampling fro time resolution 3210 istance = time x speed "Smalled x speed = AE × C"Balod Ocm St = - 10-3 Cricket => 300m/5 vs 3x105 Ultrasonal => 10

FMCW: Measure time by measuring frequency

* Wirdess Signal Ofrequency * FMEW(chip) For-71

FMCW: Measure time by measuring frequency

How do we measure ΔF ?

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

Basics of Fourier transform. Line signed ->FTIen at [= period

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

$\Delta F \rightarrow Reflection Time \rightarrow Distance$

<u>Challenge:</u> Multipath → Many Reflections

Why 2 peaks when we only have one moving person?

The direct reflection arrives before dynamic multipath!

Mapping Distance to Location

Person can be anywhere on an ellipse whose foci are (Tx,Rx)

By adding another antenna and intersecting the ellipses, we can localize the person

From Location to tracking

Fails for multiple people in the environment, and we need a more comprehensive solution

How can we deal with multi-path reflections when there are multiple persons in the environment? Idea: Person is consistent across different vantage points while multi-path is different from different vantage points

Combining across Multiple Vantage Points Experiment: Two users walking Setup Single Vantage Point 8 Distance (meters) 6 3 0 -3 -2 -1 0 1 Distance (meters) 2 3 4 -4

<u>Mathematically:</u> each round-trip distance can be mapped to an ellipse whose foci are the transmitter and the receiver

Combining across Multiple Vantage Points Experiment: Two users walking Setup Two Vantage Points 8 Distance (meters) 0<u>4</u> -2 -1 0 1 Distance (meters) -3 3 2 4

Combining across Multiple Vantage Points Experiment: Two users walking Setup 16 Vantage Points 8 Distance (meters) N & A G 0 0 -4 -3 3 -2 2 -1 0 1 Distance (meters) 2 4 I ocalize the two users

Multi-User LocalizationExperiment: Four persons walkingSetupAll Vantage Points

<u>Near-Far Problem:</u> Nearby persons have more power than distance reflectors and can mask them

Setup

All Vantage Points

Successive Silhouette Cancellation: a new algorithm that localizes multiple persons in the scene by addressing the near-far problem Successive Silhouette Cancellation: a new algorithm that localizes multiple persons in the scene by addressing the near-far problem

Goal: Recover human reflections

First localize the user with the strongest reflection

Cancel the impact of the person's whole body

After reconstructing and cancelling the first user's reflections

Iteratively localize the remaining users in the scene

Iteratively localize the remaining users in the scene

How can we localize static users?

Dealing with multi-path when there is one moving user

We eliminated direct table reflections by subtracting consecutive measurements

Needs User to Move

Dealing with multi-path when there is one moving user

We eliminated direct table reflections by subtracting consecutive measurements

Needs User to Move

Exploit breathing motion for localize static users

 Breathing and walking happen at different time scales

-A user that is pacing moves at 1m/s

-When you breathe, chest moves by few mm/s

 Cannot use the same subtraction window to eliminate multi-path

User Walking at 1m/s

3s subtraction window

30ms subtraction window

User Sitting Still (Breathing)

User Sitting Still (Breathing)

Use multi-resolution subtraction window to eliminate multi-path while being able to localize both static and moving users

Centimeter-scale localization without requiring the user to carry a wireless device

Want a silhouette

<u>Approach</u>: Combine antenna arrays with FMCW to get 3D image

- 2D Antenna array gives 2 angles
- FMCW gives depth (1D)

2D array

Challenge: We only obtain blobs in space

Output of 3D RF Scan

Blobs of reflection power

At every point in time, we get reflections from only a subset of body parts.

Solution Idea: Exploit Human Motion and Aggregate over Time

Solution Idea: Exploit Human Motion and Aggregate over Time

Combine the various snapshots

Human Walks toward Sensor

Human Walks toward Sensor

Combine the various snapshots

Human Walks toward Sensor

Sample Captured Figures through Walls

Through-wall classification accuracy of 90% among 13 users

